In Silico Phase-Contrast X-Ray Imaging of Anthropomorphic Voxel-Based Phantoms

被引:4
|
作者
Haggmark, Ilian [1 ]
Shaker, Kian [1 ]
Hertz, Hans M. [1 ]
机构
[1] KTH Royal Inst Technol, Dept Appl Phys, AlbaNova, S-10691 Stockholm, Sweden
关键词
Phantoms; X-ray imaging; Breast; Numerical models; Task analysis; Photonics; In silico imaging; mammography; phase contrast; radiography; wave propagation; x-ray;
D O I
10.1109/TMI.2020.3031318
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Propagation-based phase-contrast X-ray imaging is an emerging technique that can improve dose efficiency in clinical imaging. In silico tools are key to understanding the fundamental imaging mechanisms and develop new applications. Here, due to the coherent nature of the phase-contrast effects, tools based on wave propagation (WP) are preferred over Monte Carlo (MC) based methods. WP simulations require very high wave-front sampling which typically limits simulations to small idealized objects. Virtual anthropomorphic voxel-based phantoms are typically provided with a resolution lower than imposed sampling requirements and, thus, cannot be directly translated for use in WP simulations. In the present paper we propose a general strategy to enable the use of these phantoms for WP simulations. The strategy is based on upsampling in the 3D domain followed by projection resulting in high-resolution maps of the projected thickness for each phantom material. These maps can then be efficiently used for simulations of Fresnel diffraction to generate in silico phase-contrast X-ray images. We demonstrate the strategy on an anthropomorphic breast phantom to simulate propagation-based phase-contrast mammography using a laboratory micro-focus X-ray source.
引用
收藏
页码:539 / 548
页数:10
相关论文
共 50 条
  • [1] X-ray phase-contrast imaging
    Endrizzi, Marco
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 878 : 88 - 98
  • [2] Edge-illumination x-ray phase-contrast imaging
    Olivo, Alessandro
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (36)
  • [3] Benchtop phase-contrast X-ray imaging
    Gundogdu, O.
    Nirgianaki, E.
    Ismail, E. Che
    Jenneson, P. M.
    Bradley, D. A.
    APPLIED RADIATION AND ISOTOPES, 2007, 65 (12) : 1337 - 1344
  • [4] Phase-contrast X-ray imaging based on interferometry
    Momose, A
    JOURNAL OF SYNCHROTRON RADIATION, 2002, 9 : 136 - 142
  • [5] Contrast Detail Phantoms for X-ray Phase-Contrast Mammography and Tomography
    Bliznakova, Kristina
    Mettivier, Giovanni
    Russo, Paolo
    Buliev, Ivan
    BREAST IMAGING, IWDM 2016, 2016, 9699 : 611 - 617
  • [6] Evaluation of X-ray phase-contrast imaging with the Medipix
    Bartl, P.
    Michel, T.
    Nachtrab, F.
    Uhlmann, N.
    Anton, G.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 633 : S143 - S147
  • [7] Phase-contrast X-ray imaging of breast
    Keyrilainen, Jani
    Bravin, Alberto
    Fernandez, Manuel
    Tenhunen, Mikko
    Virkkunen, Pekka
    Suortti, Pekka
    ACTA RADIOLOGICA, 2010, 51 (08) : 866 - 884
  • [8] Hard X-ray phase-contrast imaging
    Gao, DC
    Pogany, A
    Stevenson, AW
    Gureyev, T
    Wilkins, SW
    Mai, ZH
    ACTA PHYSICA SINICA, 2000, 49 (12) : 2357 - 2368
  • [9] Wide-area phase-contrast X-ray imaging using large X-ray interferometers
    Momose, A
    Takeda, T
    Yoneyama, A
    Koyama, I
    Itai, Y
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 467 : 917 - 920
  • [10] Grating-based X-ray phase-contrast imaging at PETRA III
    Hipp, A.
    Beckmann, F.
    Lytaev, P.
    Greving, I.
    Lottermoser, L.
    Dose, T.
    Kirchhof, R.
    Burmester, H.
    Schreyer, A.
    Herzen, J.
    DEVELOPMENTS IN X-RAY TOMOGRAPHY IX, 2014, 9212