Generalized monotonicity of subdifferentials and generalized convexity

被引:13
作者
Penot, JP [1 ]
Sach, PH [1 ]
机构
[1] HANOI INST MATH, HANOI, VIETNAM
关键词
convexity; generalized convexity; monotone functions; pseudoconvexity; pseudomonotone functions; quasiconvexity; quasimonotone functions; subdifferentials;
D O I
10.1023/A:1022628223741
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Characterizations of convexity and quasiconvexity of lower semicontinuous functions on a Banach space X are presented in terms of the contingent and Frechet subdifferentials. They rely on a general mean-value theorem for such subdifferentials, which is valid in a class of spaces which contains the class of Asplund spaces.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 33 条
[1]  
[Anonymous], SIAM J CONTROL OPTIM
[2]  
AUSSEL D, 1994, THESIS U CLERMONTFER
[3]  
Aussel D., 1994, J CONVEX ANAL, V1, P195
[4]  
Avriel Mordecai., 1988, GEN CONCAVITY
[5]  
CAMBINI A, 1990, LECT NOTES EC MATH S, V305
[6]   SUBDIFFERENTIAL MONOTONICITY AS CHARACTERIZATION OF CONVEX-FUNCTIONS [J].
CORREA, R ;
JOFRE, A ;
THIBAULT, L .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (5-6) :531-535
[7]  
CORREA R, 1992, P AM MATH SOC, V116, P67
[8]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[9]  
CROUZEIX JP, THESIS U CLERMONT FE
[10]   EVOLUTION-EQUATIONS WITH LACK OF CONVEXITY [J].
DEGIOVANNI, M ;
MARINO, A ;
TOSQUES, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (12) :1401-1443