High regularity of the solution to the singular elliptic p(.)-Laplacian system

被引:1
作者
Crispo, Francesca [1 ]
Grisanti, Carlo R. [2 ]
机构
[1] Univ Campania L Vanvitelli, Dipartimento Matemat & Fis, Via Vivaldi 43, I-81100 Caserta, Italy
[2] Univ Pisa, Dipartimento Matemat, Via F Buonarroti 1c, I-56127 Pisa, Italy
关键词
p(x)-Laplacian system; Higher integrability; Global regularity; Variable exponents spaces; ELECTRORHEOLOGICAL FLUIDS; DIFFERENTIAL-EQUATIONS; BOUNDARY; UNIQUENESS; EXISTENCE; GRADIENT;
D O I
10.1016/j.na.2019.111603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity properties of solutions to the non-homogeneous singular p(x)-Laplacian system in a bounded domain of R-n. Under suitable restrictions on the range of p(x), we construct a W-2, r solution, with r > n, that implies the Holder continuity of the gradient. Moreover, assuming just p(x) is an element of (1, 2) we prove that the second derivatives belong to L-2. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 33 条
  • [1] Electrorheological fluids: Ill posedness of uniqueness backward in time
    Abbatiello, A.
    Crispo, F.
    Maremonti, P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 170 : 47 - 69
  • [2] Existence of Regular Time-Periodic Solutions to Shear-Thinning Fluids
    Abbatiello, Anna
    Maremonti, Paolo
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (02) : 1 - 14
  • [3] Regularity results for stationary electro-rheological fluids
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 213 - 259
  • [4] ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1.
    AGMON, S
    DOUGLIS, A
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) : 623 - 727
  • [5] [Anonymous], 2001, Ann. Scuola Norm. Sup. Pisa Cl. Sci
  • [6] [Anonymous], 1996, Chin. J. Contemp. Math
  • [7] [Anonymous], 2012, LECT NOTES SCUOLA NO
  • [8] Barhoun A., 2002, APPL ANAL, V81, P13, DOI [10.1080/0003681021000021042, DOI 10.1080/0003681021000021042]
  • [9] Bensoussan A., 2002, Appl. Math. Sci.
  • [10] Holder estimates for parabolic p(x, t)-Laplacian systems
    Boegelein, Verena
    Duzaar, Frank
    [J]. MATHEMATISCHE ANNALEN, 2012, 354 (03) : 907 - 938