Activation of the ATF3 gene through a co-ordinated amino acid-sensing response programme that controls transcriptional regulation of responsive genes following amino acid limitation

被引:73
作者
Pan, Yuan-Xiang
Chen, Hong
Thiaville, Michelle M.
Kilberg, Michael S. [1 ]
机构
[1] Univ Florida, Coll Med, Shands Canc Ctr, Genet Inst,Dept Biochem & Mol Biol, Gainesville, FL 32610 USA
[2] Univ Florida, Coll Med, Ctr Nutr Sci, Gainesville, FL 32610 USA
关键词
amino acid response element (AARE); amino acid-sensing; activating transcription factor 3 (ATF3); CCAAT/enhancer-binding protein (C/EBP); histone acetylation; transcription regulation;
D O I
10.1042/BJ20061261
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Expression of ATF3 (activating transcription factor 3) is induced by a variety of environmental stress conditions, including nutrient limitation. In the present study, we demonstrate that the increase in ATF3 mRNA content following amino acid limitation of human HepG2 hepatoma cells is dependent on transcriptional activation of the ATF3 gene, through a highly coordinated amino acid-responsive programme of transcription factor synthesis and action. Studies using transient overexpression and knockout fibroblasts showed that several ATF and C/EBP (CCAAT/enhancer-binding protein) family members contribute to ATF3 regulation. Promoter analysis showed that a C/EBP-ATF composite site at -23 to -15 bp relative to the transcription start site of the ATF3 gene functions as an AARE (amino acid response element). Chromatin immunoprecipitation demonstrated that amino acid limitation increased ATF4, ATF3, and C/EBP beta binding to the ATF3 promoter, but the kinetics of each was markedly different. Immediately following histidine removal, there was a rapid increase in histone H3 acetylation prior to an enhancement in ATF4 binding and in histone H4 acetylation. These latter changes closely paralleled the initial increase in RNA pol II (RNA polymerase II) binding to the promoter and in the transcription rate from the ATF3 gene. The increase in ATF3 and C/EBP beta binding was considerably slower and more closely correlated with a decline in transcription rate. A comparison of the recruitment patterns between ATF and C/EBP transcription factors and RNA polymerase II at the AARE of several amino acid-responsive genes revealed that a highly co-ordinated response programme controls the transcriptional activation of these genes following amino acid limitation.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 37 条
[1]   Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation [J].
Averous, J ;
Bruhat, A ;
Jousse, C ;
Carraro, V ;
Thiel, G ;
Fafournoux, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (07) :5288-5297
[2]  
Barbosa-Tessmann IP, 2000, J BIOL CHEM, V275, P26976
[3]   Histone modifications in transcriptional regulation [J].
Berger, SL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (02) :142-148
[4]   Differences in the molecular mechanisms involved in the transcriptional activation of the CHOP and asparagine synthetase genes in response to amino acid deprivation or activation of the unfolded protein response [J].
Bruhat, A ;
Averous, J ;
Carraro, V ;
Zhong, C ;
Reimold, AM ;
Kilberg, MS ;
Fafournoux, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (50) :48107-48114
[5]   Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels [J].
Bruhat, A ;
Jousse, C ;
Wang, XZ ;
Ron, D ;
Ferrara, M ;
Fafournoux, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (28) :17588-17593
[6]   Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10 [J].
Chen, BPC ;
Wolfgang, CD ;
Hai, TW .
MOLECULAR AND CELLULAR BIOLOGY, 1996, 16 (03) :1157-1168
[7]  
Chen C H, 1994, J Hematother, V3, P3, DOI 10.1089/scd.1.1994.3.3
[8]   Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation [J].
Chen, H ;
Pan, YX ;
Dudenhausen, EE ;
Kilberg, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (49) :50829-50839
[9]   Acetylation and chromosomal functions [J].
Cheung, WL ;
Briggs, SD ;
Allis, CD .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (03) :326-333
[10]   Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response [J].
Fawcett, TW ;
Martindale, JL ;
Guyton, KZ ;
Hai, T ;
Holbrook, NJ .
BIOCHEMICAL JOURNAL, 1999, 339 :135-141