Absorption in Invariant Domains for Semigroups of Quantum Channels

被引:3
作者
Carbone, Raffaella [1 ]
Girotti, Federico [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat, Via Ferrata 1, I-27100 Pavia, Italy
来源
ANNALES HENRI POINCARE | 2021年 / 22卷 / 08期
关键词
Quantum channel; Quantum Markov semigroup; Absorption probabilities; Ergodic theory; Quantum recurrence; Fixed points;
D O I
10.1007/s00023-021-01016-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a notion of absorption operators in the context of quantum Markov processes. The absorption problem in invariant domains (enclosures) is treated for a quantum Markov evolution on a separable Hilbert space, both in discrete and continuous times: We define a well-behaving set of positive operators which can correspond to classical absorption probabilities, and we study their basic properties, in general, and with respect to accessibility structure of channels, transience and recurrence. In particular, we can prove that no accessibility is allowed between the null and positive recurrent subspaces. In the case, when the positive recurrent subspace is attractive, ergodic theory will allow us to get additional results, in particular about the description of fixed points.
引用
收藏
页码:2497 / 2530
页数:34
相关论文
共 50 条
[31]   Categories of quantum and classical channels [J].
Coecke, Bob ;
Heunen, Chris ;
Kissinger, Aleks .
QUANTUM INFORMATION PROCESSING, 2016, 15 (12) :5179-5209
[32]   Categories of quantum and classical channels [J].
Bob Coecke ;
Chris Heunen ;
Aleks Kissinger .
Quantum Information Processing, 2016, 15 :5179-5209
[33]   Incompatibility breaking quantum channels [J].
Heinosaari, Teiko ;
Kiukas, Jukka ;
Reitzner, Daniel ;
Schultz, Jussi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (43)
[34]   On the extreme points of quantum channels [J].
Friedland, Shmuel ;
Loewy, Raphael .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 498 :553-573
[35]   Reduction of unitary operators, quantum graphs and quantum channels [J].
Salcedo, L. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (03)
[36]   Energy-Сonstrained Diamond Norms and Quantum Dynamical Semigroups [J].
M. E. Shirokov ;
A. S. Holevo .
Lobachevskii Journal of Mathematics, 2019, 40 :1569-1586
[37]   A characterization of quantum Markov semigroups of weak coupling limit type [J].
Fagnola, Franco ;
Quezada, Roberto .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2019, 22 (02)
[38]   Detailed balance, time reversal, and generators of quantum Markov semigroups [J].
F. Fagnola ;
V. Umanità .
Mathematical Notes, 2008, 84 :108-115
[39]   Ergodicity of exclusion semigroups constructed from quantum Bernoulli noises [J].
Chen, Jinshu ;
Hai, Shexiang .
STOCHASTICS AND DYNAMICS, 2023, 23 (03)
[40]   The Decoherence-Free Subalgebra of Gaussian Quantum Markov Semigroups [J].
Julián Agredo ;
Franco Fagnola ;
Damiano Poletti .
Milan Journal of Mathematics, 2022, 90 :257-289