Exact scalar-tensor cosmological models

被引:15
作者
Belinchon, J. A. [1 ]
Harko, T. [2 ,3 ]
Mak, M. K. [1 ,4 ]
机构
[1] Univ Atacama, Dept Fis, Copayapu 485, Copiapo, Chile
[2] Babes Bolyai Univ, Dept Phys, Kogalniceanu St, Cluj Napoca 400084, Romania
[3] UCL, Dept Math, Gower St, London WC1E 6BT, England
[4] Open Univ Hong Kong, Sch Sci & Technol, Kowloon, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2017年 / 26卷 / 07期
关键词
General relativity; scalar-tensor theory; Lie group approach; dynamical Noether symmetry; exact solutions; MACHS PRINCIPLE; MODIFIED GRAVITY; DARK ENERGY; RELATIVISTIC THEORY; SYMMETRIES; SUPERNOVAE; QUINTESSENCE; CONSTANT; DYNAMICS;
D O I
10.1142/S0218271817500730
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Scalar-tensor gravitational theories are important extensions of standard general relativity, which can explain both the initial inflationary evolution, as well as the late accelerating expansion of the universe. In the present paper, we investigate the cos-mological solution of a scalar-tensor gravitational theory, in which the scalar field phi couples to the geometry via an arbitrary function F(phi). The kinetic energy of the scalar field as well as its self-interaction potential V (phi) are also included in the gravitational action. By using a standard mathematical procedure, the Lie group approach, and Noether symmetry techniques, we obtain several exact solutions of the gravitational field equations describing the time evolutions of a flat Friedman-Robertson-Walker universe in the framework of the scalar-tensor gravity. The obtained solutions can describe both accelerating and decelerating phases during the cosmological expansion of the universe.
引用
收藏
页数:18
相关论文
共 54 条
[1]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[2]   SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION [J].
Amanullah, R. ;
Lidman, C. ;
Rubin, D. ;
Aldering, G. ;
Astier, P. ;
Barbary, K. ;
Burns, M. S. ;
Conley, A. ;
Dawson, K. S. ;
Deustua, S. E. ;
Doi, M. ;
Fabbro, S. ;
Faccioli, L. ;
Fakhouri, H. K. ;
Folatelli, G. ;
Fruchter, A. S. ;
Furusawa, H. ;
Garavini, G. ;
Goldhaber, G. ;
Goobar, A. ;
Groom, D. E. ;
Hook, I. ;
Howell, D. A. ;
Kashikawa, N. ;
Kim, A. G. ;
Knop, R. A. ;
Kowalski, M. ;
Linder, E. ;
Meyers, J. ;
Morokuma, T. ;
Nobili, S. ;
Nordin, J. ;
Nugent, P. E. ;
Ostman, L. ;
Pain, R. ;
Panagia, N. ;
Perlmutter, S. ;
Raux, J. ;
Ruiz-Lapuente, P. ;
Spadafora, A. L. ;
Strovink, M. ;
Suzuki, N. ;
Wang, L. ;
Wood-Vasey, W. M. ;
Yasuda, N. .
ASTROPHYSICAL JOURNAL, 2010, 716 (01) :712-738
[3]   (An)Isotropic models in scalar and scalar-tensor cosmologies [J].
Antonio Belinchon, Jose .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 338 (02) :381-400
[4]   Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests [J].
Bamba, Kazuharu ;
Capozziello, Salvatore ;
Nojiri, Shin'ichi ;
Odintsov, Sergei D. .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (01) :155-228
[5]   Exact scalar-tensor cosmological solutions via Noether symmetry [J].
Belinchon, J. A. ;
Harko, T. ;
Mak, M. K. .
ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (02) :1-14
[6]   Generalized self-similar scalar-tensor theories [J].
Belinchon, J. A. .
EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (01) :1-16
[7]  
Bluman GW., 2002, Symmetry and integration methods for differential equations
[8]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[9]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION .2. [J].
BRANS, CH .
PHYSICAL REVIEW, 1962, 125 (06) :2194-&
[10]   MACHS PRINCIPLE AND LOCALLY MEASURED GRAVITATIONAL CONSTANT IN GENERAL RELATIVITY [J].
BRANS, CH .
PHYSICAL REVIEW, 1962, 125 (01) :388-&