Reduning injection and its effective constituent luteoloside protect against sepsis partly via inhibition of HMGB1/TLR4/NF-κB/MAPKs signaling pathways

被引:46
|
作者
Wang, Zheng [1 ]
Chen, Wen [1 ]
Li, Yunying [2 ]
Zhang, Shuying [2 ]
Lou, He [1 ]
Lu, Xiaoyan [1 ]
Fan, Xiaohui [1 ,2 ]
机构
[1] Zhejiang Univ, Pharmaceut Informat Inst, Coll Pharmaceut Sci, Hangzhou 310058, Peoples R China
[2] Tianjin Univ Tradit Chinese Med, State Key Lab Modern Chinese Med, Tianjin 301617, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Reduning injection; Luteoloside; Sepsis; Inflammation; High mobility group box 1;
D O I
10.1016/j.jep.2021.113783
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: Reduning injection (RDN), a popular traditional Chinese medicine, formulated by three herbs (i.e., Artemisia carvifolia Buch.-Ham. ex Roxb., Lonicera japonica Thunb., and Gardenia jasminoides J. Ellis), has been widely used to treat upper respiratory infectious diseases in China. Aim of the study: To investigate the protective effect of RDN on both lipopolysaccharides (LPS)- and cecal ligation and puncture (CLP)-induced septic mice. To identify the potentially effective constituent, and to determine its protective effect and underlying mechanism in vivo and in vitro. Materials and methods: Male C57BL/6 mice were used to establish septic model by tail intravenous injection of 4 mg/kg LPS or CLP surgery. After modeling, mice were administered by tail intravenous injection of RDN in the dose of 16 or 8 mL/kg/day. The mortality, histopathology, plasma levels of inflammatory cytokines were evaluated respectively. In addition, we screened the potentially effective substances of RDN against sepsis by detecting the nitric oxide (NO) production in LPS-stimulated Raw 264.7 cells and verified the effect of luteoloside in CLP-induced septic mice subsequently. Finally, the underlying mechanisms of RDN and luteoloside were investigated in the inflammatory model in vitro. Results: Administration of RDN significantly reduced the mortality and increased the survival rate in both LPS-and CLP-induced septic mice. Meanwhile, RDN reduced the release of inflammatory cytokines accompanied by alleviating the organs damage of lung, liver, and kidney in CLP-induced septic mice. Moreover, several components from Gardenia jasminoides J. Ellis extract (ZZ) or Lonicera japonica Thunb and Artemisia carvifolia Buch.Ham. ex Roxb extract (JQ) as well as the constituents of luteoloside, quercetin, and caffeic acid were screened out to have obvious anti-inflammatory activity, which may be the potentially effective substances of RDN against sepsis. We further verified the protective role of luteoloside in CLP-induced septic mice. In addition, RDN and luteoloside significantly inhibited both the secretion and translocation of mobility group box (HMGB)1, and HMGB1-mediated activation of TLR4/NF-kappa B/MAPKs signaling pathways. Conclusion: RDN and its effective constituent luteoloside exhibited a significant protective effect against sepsis, which were potential candidate drugs for treatment of sepsis. The mechanism of antisepsis partly was related to inhibition of HMGB1/TLR4/NF-kappa B/MAPKs signaling pathways. The results provide an evidence base for the follow-up clinical application of RDN in treatment of sepsis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Inhibition of HMGB1 improves necrotizing enterocolitis by inhibiting NLRP3 via TLR4 and NF-κB signaling pathways
    Yu, Renqiang
    Jiang, Shanyu
    Tao, Yaqin
    Li, Ping
    Yin, Juan
    Zhou, Qin
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (08) : 13431 - 13438
  • [2] Fingolimod Alleviates Inflammation after Cerebral Ischemia via HMGB1/TLR4/NF-κB Signaling Pathway
    Xing, Yao
    Zhong, Liyuan
    Guo, Jun
    Bao, Cuifen
    Luo, Yumin
    Min, Lianqiu
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2024, 23 (08)
  • [3] Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways
    Xu, Xiang
    Piao, Hu-Nan
    Aosai, Fumie
    Zeng, Xiao-Yu
    Cheng, Jia-Hui
    Cui, Yue-Xian
    Li, Jing
    Ma, Juan
    Piao, Hu-Ri
    Jin, Xuejun
    Piao, Lian-Xun
    BRITISH JOURNAL OF PHARMACOLOGY, 2020, 177 (22) : 5224 - 5245
  • [4] Isochlorogenic acid A attenuates progression of liver fibrosis through regulating HMGB1/TLR4/NF-κB signaling pathways
    LIU Xin
    KUANG Kai
    MEI Dan
    ZHANG Bo
    中国药理学与毒理学杂志, 2019, 33 (09) : 692 - 692
  • [5] Calycosin Protects against Focal Cerebral Ischemia/Reperfusion Injury via Inhibiting the HMGB1/TLR4/NF-κB Signaling Pathway
    Wang, Yong
    Wang, Shifeng
    Zhang, Peng
    Xiao, Shengjun
    Shi, Huizhong
    Chen, Zihan
    PHARMACOGNOSY MAGAZINE, 2024, 20 (02) : 606 - 615
  • [6] Effect of Shikonin on Spinal Cord Injury in Rats Via Regulation of HMGB1/TLR4/NF-κB Signaling Pathway
    Bi, Yihui
    Zhu, Yapeng
    Zhang, Mingkai
    Zhang, Keke
    Hua, Xingyi
    Fang, Zheng
    Zhou, Jian
    Dai, Wenjie
    Cui, Yixing
    Li, Jun
    You, Tao
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 43 (02) : 481 - 491
  • [7] Alcohol Induces Zebrafish Skeletal Muscle Atrophy through HMGB1/TLR4/NF-κB Signaling
    Wen, Wei
    Sun, Chenchen
    Chen, Zhanglin
    Yang, Dong
    Zhou, Zuoqiong
    Peng, Xiyang
    Tang, Changfa
    LIFE-BASEL, 2022, 12 (08):
  • [8] miR-22 alleviates sepsis-induced acute kidney injury via targeting the HMGB1/TLR4/NF-κB signaling pathway
    Zhang, Jie
    Chen, Qi
    Dai, Zhuquan
    Pan, Huibin
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2023, 55 (02) : 409 - 421
  • [9] Modulation of the HMGB1/TLR4/NF-κB signaling pathway in the CNS by matrine in experimental autoimmune encephalomyelitis
    Chu, Yaojuan
    Jing, Yilei
    Zhao, Xiaoyu
    Wang, Mengru
    Zhang, Mingliang
    Ma, Rui
    Ma, Wendi
    Lv, Ying
    Zhu, Lin
    JOURNAL OF NEUROIMMUNOLOGY, 2021, 352
  • [10] miR-22 alleviates sepsis-induced acute kidney injury via targeting the HMGB1/TLR4/NF-κB signaling pathway
    Jie Zhang
    Qi Chen
    Zhuquan Dai
    Huibin Pan
    International Urology and Nephrology, 2023, 55 : 409 - 421