Capacitive Hysteresis Effects in Ionic Liquids: 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate on Polycrystalline Gold Electrode

被引:4
作者
Pitawela, Niroodha R. [1 ]
Shaw, Scott K. [1 ]
机构
[1] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA
关键词
Ionic Liquid; capacitance; impedance; hysteresis; double layer; Electroanalytical Electrochemistry; DOUBLE-LAYER STRUCTURE; ELECTRICAL DOUBLE-LAYER; DIFFERENTIAL CAPACITANCE; GLASSY-CARBON; SOLVENT-FREE; INTERFACE; SURFACE; SIZE; RELAXATION; AMPLITUDE;
D O I
10.1149/1945-7111/abf4ac
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ionic liquids (ILs) add complexity to electrochemical interfaces that cannot be adequately treated with traditional double layer models. We present a series of carefully controlled capacitance measurements to optimize the collection of reproducible and uniform capacitance-potential datasets. We quantitatively evaluate analysis methods on the experimentally observed capacitance of l-ethyl-3-methylimidazolium trifluoromethauesulfonate [Emim][TFO] IL at the gold-IL interface. The major outcomes of our work are to identify how experimental data collection methods affect capacitive hysteresis, and to suggest a systematic approach to collect reproducible capacitance data for IL systems. We evaluate different potential scan directions, examine varying potential sweep rates, and capacitance collection methods. We find that faster scan rates can mitigate the capacitive hysteresis between the anodic and cathodic scans for a particular collection technique. However, faster scan rates also result in more variation between the collection techniques. We also find that decreasing the effective potential sweep rate reduces hysteresis between different collection techniques when other factors are held constant. It is crucial for researchers to consistently report the direction of the potential sweep and the effective rate of potential sweep. Our data suggest that using slower effective potential perturbation rates would reduce discrepancies in capacitance data collected from different laboratories under different experimental conditions.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Electrodeposition of aluminium from the chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride [J].
Elterman, V. A. ;
Shevelin, P. Yu ;
Yolshina, L. A. ;
Borozdin, A., V .
ELECTROCHIMICA ACTA, 2021, 389
[42]   Thermodynamics of 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium chlorides [J].
Kalinyuk, D. A. ;
Druzhinina, A. I. ;
Tiflova, L. A. ;
Dorofeeva, O. V. ;
Golubev, Y. V. ;
Iliyn, D. Yu ;
Semavin, K. D. ;
Chilingarov, N. S. .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2023, 179
[43]   Electrochemistry of tin in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid [J].
Leong, Tin-Iao ;
Hsieh, Yi-Ting ;
Sun, I-Wen .
ELECTROCHIMICA ACTA, 2011, 56 (11) :3941-3946
[44]   Electrodeposition of iron from 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and reverse microemulsions of Triton X-100 [J].
Tabassum, Nazifa ;
Saha, Shimul ;
Islam, Md. Mominul ;
Susan, Md. Abu Bin Hasan .
ROYAL SOCIETY OPEN SCIENCE, 2024, 11 (05)
[45]   Effects of Ionic Liquid 1-Ethyl-3-Methylimidazolium Diethylphosphate on Cellulase Produced by Paenibacillus sp LLZ1 [J].
Hu, Dongxue ;
Xiao, Lei ;
Li, Liangzhi ;
Zhong, Cheng ;
Ju, Xin ;
Yan, Lishi ;
Wu, Tianyun ;
Qing, Min ;
Hu, Zhiying .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (09) :4922-4926
[46]   Studies on the Solvation Dynamics of Coumarin 153 in 1-Ethyl-3-Methylimidazolium Alkylsulfate Ionic Liquids: Dependence on Alkyl Chain Length [J].
Das, Sudhir Kumar ;
Sarkar, Moloy .
CHEMPHYSCHEM, 2012, 13 (11) :2761-2768
[47]   Effects of Ionic Liquid, 1-Ethyl-3-methylimidazolium Chloride ([EMIM]Cl), on the Material and Electrical Characteristics of Asphaltene Thin Films [J].
Thulasiraman, Sundarajoo ;
Yunus, Noor Mona Md ;
Kumar, Pradeep ;
Kesuma, Zayyan Rafi ;
Norhakim, Nadia ;
Wilfred, Cecilia Devi ;
Roffi, Teuku Muhammad ;
Hamdan, Mohamad Faizal ;
Burhanudin, Zainal Arif .
MATERIALS, 2022, 15 (08)
[48]   Anodic hydrogen electrode reaction in aluminum chloride-1-ethyl-3-methylimidazolium chloride, ionic liquids [J].
Tsuda, T ;
Hussey, CL ;
Nohira, T ;
Ikoma, Y ;
Yamauchi, K ;
Hagiwara, R ;
Ito, Y .
ELECTROCHEMISTRY, 2005, 73 (08) :644-650
[49]   CO2 absorption properties, densities, viscosities, and electrical conductivities of ethylimidazolium and 1-ethyl-3-methylimidazolium ionic liquids [J].
Makino, Takashi ;
Kanakubo, Mitsuhiro ;
Masuda, Yoshio ;
Umecky, Tatsuya ;
Suzuki, Akira .
FLUID PHASE EQUILIBRIA, 2014, 362 :300-306
[50]   In situ STM studies of Bi(111)|1-ethyl-3-methylimidazolium tetrafluoroborate+1-ethyl-3-methylimidazolium iodide interface [J].
Anderson, E. ;
Grozovski, V. ;
Siinor, L. ;
Siimenson, C. ;
Lust, E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 46 :18-21