Multiple upstream modules regulate zebrafish myf5 expression

被引:39
作者
Chen, Yau-Hung
Wang, Yun-Hsin
Chang, Min-Yen
Lin, Cheng-Yung
Weng, Chih-Wei
Westerfield, Monte
Tsai, Huai-Jen
机构
[1] Natl Taiwan Univ, Inst Mol & Cellular Biol, Taipei 106, Taiwan
[2] Tamkang Univ, Grad Inst Life Sci, Tamsui 25137, Taiwan
[3] Univ Oregon, Inst Neurosci, Eugene, OR 97403 USA
来源
BMC DEVELOPMENTAL BIOLOGY | 2007年 / 7卷
关键词
D O I
10.1186/1471-213X-7-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. Results: We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP) reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1) the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2) the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3) the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4) the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5) the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. Conclusion: We suggest that the cell lineage-specific expression of myf5 is delicately orchestrated by multiple modules within the distal upstream region. This study provides an insight to understand the molecular control of myf5 and myogenesis in the zebrafish.
引用
收藏
页数:14
相关论文
共 40 条
[1]   MyoD and the transcriptional control of myogenesis [J].
Berkes, CA ;
Tapscott, SJ .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2005, 16 (4-5) :585-595
[2]   Myf5 expression in somites and limb buds of mouse embryos is controlled by two distinct distal enhancer activities [J].
Buchberger, A ;
Nomokonova, N ;
Arnold, HH .
DEVELOPMENT, 2003, 130 (14) :3297-3307
[3]  
Carvajal JJ, 2001, DEVELOPMENT, V128, P1857
[4]   Novel regulatory sequence-82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5 [J].
Chen, YH ;
Lee, HC ;
Liu, CF ;
Lin, CY ;
Tsai, HJ .
DEVELOPMENTAL DYNAMICS, 2003, 228 (01) :41-50
[5]   Treatment with Myf5-morpholino results in somite patterning and brain formation defects in zebrafish [J].
Chen, YH ;
Tsai, HJ .
DIFFERENTIATION, 2002, 70 (08) :447-456
[6]  
Chen YH, 2001, GENESIS, V29, P22, DOI 10.1002/1526-968X(200101)29:1<22::AID-GENE1002>3.0.CO
[7]  
2-Z
[8]   Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation [J].
Chou, CY ;
Horng, LS ;
Tsai, HJ .
TRANSGENIC RESEARCH, 2001, 10 (04) :303-315
[9]   The E protein HEB is preferentially expressed in developing muscle [J].
Conway, K ;
Pin, C ;
Kiernan, JA ;
Merrifield, P .
DIFFERENTIATION, 2004, 72 (07) :327-340
[10]   Wnt signaling and the activation of myogenesis in mammals [J].
Cossu, G ;
Borello, U .
EMBO JOURNAL, 1999, 18 (24) :6867-6872