Symmetry and monotonicity of singular solutions of double phase problems

被引:21
作者
Biagi, Stefano [1 ]
Esposito, Francesco [2 ]
Vecchi, Eugenio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
关键词
Double phase problems; Singular solutions; Moving plane method; QUALITATIVE PROPERTIES; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; EXISTENCE; SYSTEMS; CALCULUS; THEOREMS;
D O I
10.1016/j.jde.2021.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 463
页数:29
相关论文
共 50 条
  • [41] Asymptotically vanishing nodal solutions for critical double phase problems
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    ASYMPTOTIC ANALYSIS, 2021, 124 (3-4) : 291 - 302
  • [42] Multiple Solutions for Double Phase Problems with Hardy Type Potential
    Lian, Chun-Bo
    Zhang, Bei-Lei
    Ge, Bin
    MATHEMATICS, 2021, 9 (04) : 1 - 19
  • [43] Solutions for parametric double phase Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ASYMPTOTIC ANALYSIS, 2021, 121 (02) : 159 - 170
  • [44] Doubly Singular Elliptic Equations Involving a Gradient Term: Symmetry and Monotonicity
    Le, Phuong
    RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [45] Regularity for double phase problems under additional integrability assumptions
    Ok, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [46] Gradient estimates for Orlicz double phase problems with variable exponents
    Baasandorja, Sumiya
    Byunb, Sun-Sig
    Lee, Ho-Sik
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [47] Constant Sign Solutions for Variable Exponent System Neumann Boundary Value Problems with Singular Coefficient
    Wu, Xianbin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [48] Existence of solutions for Kirchhoff ff-double phase anisotropic variational problems with variable exponents
    Ma, Wei
    Zhang, Qiongfen
    AIMS MATHEMATICS, 2024, 9 (09): : 23384 - 23409
  • [49] Existence of solutions for double phase obstacle problems with multivalued convection term
    Zeng, Shengda
    Gasinski, Leszek
    Winkert, Patrick
    Bai, Yunru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [50] On a class of critical double phase problems
    Farkas, Csaba
    Fiscella, Alessio
    Winkert, Patrick
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (02)