Symmetry and monotonicity of singular solutions of double phase problems

被引:21
作者
Biagi, Stefano [1 ]
Esposito, Francesco [2 ]
Vecchi, Eugenio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
关键词
Double phase problems; Singular solutions; Moving plane method; QUALITATIVE PROPERTIES; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; EXISTENCE; SYSTEMS; CALCULUS; THEOREMS;
D O I
10.1016/j.jde.2021.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 463
页数:29
相关论文
共 50 条
  • [31] Parametric superlinear double phase problems with singular term and critical growth on the boundary
    Crespo-Blanco, Angel
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (04) : 2276 - 2298
  • [32] Gradient estimates for Orlicz double-phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (04) : 2215 - 2268
  • [33] Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting
    Fiscella, Alessio
    Marino, Greta
    Pinamonti, Andrea
    Verzellesi, Simone
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (01): : 205 - 236
  • [34] Concentration of solutions for non-autonomous double-phase problems with lack of compactness
    Zhang, Weiqiang
    Zuo, Jiabin
    Radulescu, Vicentiu D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [36] Nonlinear obstacle problems with double phase in the borderline case
    Byun, Sun-Sig
    Cho, Yumi
    Oh, Jehan
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (04) : 651 - 669
  • [37] Singular Double Phase Equations
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1031 - 1044
  • [38] Concentration of solutions for double-phase problems with a general nonlinearity
    Wang, Li
    Wang, Jun
    Zhou, Daoguo
    AIMS MATHEMATICS, 2023, 8 (06): : 13593 - 13622
  • [39] Divergent sequence of nontrivial solutions for superlinear double phase problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ASYMPTOTIC ANALYSIS, 2023, 134 (1-2) : 183 - 192
  • [40] Instability of solutions to double-phase problems with exponential nonlinearity
    Le, Phuong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7923 - 7933