Symmetry and monotonicity of singular solutions of double phase problems

被引:21
作者
Biagi, Stefano [1 ]
Esposito, Francesco [2 ]
Vecchi, Eugenio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
关键词
Double phase problems; Singular solutions; Moving plane method; QUALITATIVE PROPERTIES; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; EXISTENCE; SYSTEMS; CALCULUS; THEOREMS;
D O I
10.1016/j.jde.2021.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 463
页数:29
相关论文
共 50 条
  • [21] Nonvariational and singular double phase problems for the Baouendi-Grushin operator
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 : 645 - 666
  • [22] Symmetry and monotonicity property of a solution of (p, q) Laplacian equation with singular terms
    Jana, Ritabrata
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (3-4): : 483 - 502
  • [24] Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory
    Ge, Bin
    Zhang, Beilei
    Yuan, Wenshuo
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (01) : 49 - 66
  • [25] Multiple solutions to the double phase problems involving concave-convex nonlinearities
    Kim, Jae-Myoung
    Kim, Yun-Ho
    AIMS MATHEMATICS, 2023, 8 (03): : 5060 - 5079
  • [26] Multiple solutions for superlinear double phase Neumann problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Youpei
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [27] Sign-changing and symmetry-breaking solutions to singular problems
    Szulkin, Andrzej
    Waliullah, Shoyeb
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (11) : 1191 - 1208
  • [28] An existence result for singular Finsler double phase problems
    Farkas, Csaba
    Winkert, Patrick
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 455 - 473
  • [29] Strongly Singular Double Phase Problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Zhang, Youpei
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (02)
  • [30] Singular Anisotropic Double Phase Problems
    Leonardi, Salvatore
    Papageorgiou, Nikolaos S. S.
    RESULTS IN MATHEMATICS, 2023, 78 (03)