Symmetry and monotonicity of singular solutions of double phase problems

被引:22
作者
Biagi, Stefano [1 ]
Esposito, Francesco [2 ]
Vecchi, Eugenio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
关键词
Double phase problems; Singular solutions; Moving plane method; QUALITATIVE PROPERTIES; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; EXISTENCE; SYSTEMS; CALCULUS; THEOREMS;
D O I
10.1016/j.jde.2021.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 463
页数:29
相关论文
共 51 条
[31]   Existence and uniqueness results for double phase problems with convection term [J].
Gasinski, Leszek ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) :4183-4193
[32]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[33]  
Heinonen J., 1993, NONLINEAR POTENTIAL
[34]   Existence and multiplicity results for double phase problem [J].
Liu, Wulong ;
Dai, Guowei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) :4311-4334
[35]  
MARCELLINI P, 1989, ARCH RATION MECH AN, V105, P267
[36]   REGULARITY AND EXISTENCE OF SOLUTIONS OF ELLIPTIC-EQUATIONS WITH P,Q-GROWTH CONDITIONS [J].
MARCELLINI, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :1-30
[37]   Qualitative properties of singular solutions to nonlocal problems [J].
Montoro, Luigi ;
Punzo, Fabio ;
Sciunzi, Berardino .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (03) :941-964
[38]  
Montoro L, 2010, ADV NONLINEAR STUD, V10, P939
[39]   Harnack inequalities and qualitative properties for some quasilinear elliptic equations [J].
Montoroto, Luigi .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06)
[40]   Existence results for double-phase problems via Morse theory [J].
Perera, Kanishka ;
Squassina, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (02)