Symmetry and monotonicity of singular solutions of double phase problems

被引:21
作者
Biagi, Stefano [1 ]
Esposito, Francesco [2 ]
Vecchi, Eugenio [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
关键词
Double phase problems; Singular solutions; Moving plane method; QUALITATIVE PROPERTIES; ELLIPTIC-EQUATIONS; REGULARITY; FUNCTIONALS; EXISTENCE; SYSTEMS; CALCULUS; THEOREMS;
D O I
10.1016/j.jde.2021.01.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 463
页数:29
相关论文
共 50 条
  • [1] Monotonicity and symmetry of singular solutions to quasilinear problems
    Esposito, Francesco
    Montoro, Luigi
    Sciunzi, Berardino
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 : 214 - 231
  • [2] SYMMETRY OF INTRINSICALLY SINGULAR SOLUTIONS OF DOUBLE PHASE PROBLEMS
    Biagi, Stefano
    Esposito, Francesco
    Vecchi, Eugenio
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (3-4) : 229 - 246
  • [3] Singular double phase problems with convection
    Papageorgiou, Nikolaos S.
    Peng, Zijia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [4] Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term
    Biagi, Stefano
    Esposito, Francesco
    Montoro, Luigi
    Vecchi, Eugenio
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (04) : 1519 - 1541
  • [5] Existence of solutions for singular double phase problems via the Nehari manifold method
    Liu, Wulong
    Dai, Guowei
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
  • [6] Constant sign solutions for double phase problems with superlinear nonlinearity
    Gasinski, Leszek
    Winkert, Patrick
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [7] Parametric singular double phase Dirichlet problems
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [8] Sequences of nodal solutions for critical double phase problems with variable exponents
    Papageorgiou, Nikolaos S.
    Vetro, Francesca
    Winkert, Patrick
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [9] On double phase Kirchhoff problems with singular nonlinearity
    Arora, Rakesh
    Fiscella, Alessio
    Mukherjee, Tuhina
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [10] SYMMETRY AND MONOTONICITY PROPERTIES OF SINGULAR SOLUTIONS TO SOME COOPERATIVE SEMILINEAR ELLIPTIC SYSTEMS INVOLVING CRITICAL NONLINEARITIES
    Esposito, Francesco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (01) : 549 - 577