Strength in numbers: predicting response to checkpoint inhibitors from large clinical datasets

被引:5
|
作者
Stenzinger, Albrecht [1 ,2 ,3 ]
Kazdal, Daniel [1 ,3 ]
Peters, Solange [4 ]
机构
[1] Univ Hosp Heidelberg, Inst Pathol, Heidelberg, Germany
[2] German Canc Consortium DKTK, Heidelberg Partner Site, Heidelberg, Germany
[3] German Ctr Lung Res DZL, Heidelberg Partner Site, Heidelberg, Germany
[4] Lausanne Univ Hosp, Dept Oncol, Lausanne, Switzerland
关键词
TUMOR;
D O I
10.1016/j.cell.2021.01.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The advent of immune checkpoint blockers for cancer therapy has spawned great interest in identifying molecular features reflecting the complexity of tumor immunity, which can subsequently be leveraged as predictive biomarkers. In a thorough big-data approach analyzing the largest series of homogenized molecular and clinical datasets, Litchfield et al. identified a set of genomic biomarkers that identifies immunotherapy responders across cancer types.
引用
收藏
页码:571 / 573
页数:3
相关论文
共 50 条
  • [1] Strategies for Predicting Response to Checkpoint Inhibitors
    Zappasodi, Roberta
    Wolchok, Jedd D.
    Merghoub, Taha
    CURRENT HEMATOLOGIC MALIGNANCY REPORTS, 2018, 13 (05) : 383 - 395
  • [2] Strategies for Predicting Response to Checkpoint Inhibitors
    Roberta Zappasodi
    Jedd D. Wolchok
    Taha Merghoub
    Current Hematologic Malignancy Reports, 2018, 13 : 383 - 395
  • [3] Predicting HIV therapy response by computational modelling of large clinical datasets
    Larder, B. A.
    ANTIVIRAL THERAPY, 2006, 11 (05) : S173 - S173
  • [4] Correction to: Strategies for Predicting Response to Checkpoint Inhibitors
    Roberta Zappasodi
    Jedd D. Wolchok
    Taha Merghoub
    Current Hematologic Malignancy Reports, 2019, 14 : 62 - 62
  • [5] Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers
    Hopkins, Ashley M.
    Rowland, Andrew
    Kichenadasse, Ganessan
    Wiese, Michael D.
    Gurney, Howard
    McKinnon, Ross A.
    Karapetis, Chris S.
    Sorich, Michael J.
    BRITISH JOURNAL OF CANCER, 2017, 117 (07) : 913 - 920
  • [6] Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers
    Ashley M Hopkins
    Andrew Rowland
    Ganessan Kichenadasse
    Michael D Wiese
    Howard Gurney
    Ross A McKinnon
    Chris S Karapetis
    Michael J Sorich
    British Journal of Cancer, 2017, 117 : 913 - 920
  • [7] Predicting Treatment Response Based on RNA Expression in Large Datasets
    Mansfield, Aaron S.
    Jen, Jin
    CLINICAL CANCER RESEARCH, 2019, 25 (05) : 1443 - 1445
  • [8] Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients
    Duffy, Michael J.
    Crown, John
    CLINICAL CHEMISTRY, 2019, 65 (10) : 1228 - 1238
  • [9] Germline, somatic and clinical associations with response to Immune Checkpoint Inhibitors and adverse events in a large patient cohort
    Groha, S.
    Abou Alaiwi, S.
    Taraszka, K.
    Lepisto, E.
    Manos, M.
    Rahma, O.
    Choueiri, T.
    Freedman, M. L.
    Schrag, D.
    Kehl, K.
    Gusev, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 92 - 92
  • [10] Predicting accuracy on large datasets from smaller pilot data
    Johnson, Mark
    Anderson, Peter
    Dras, Mark
    Steedman, Mark
    PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, 2018, : 450 - 455