Differentiation and Empirical Analysis of Reference Types in Legal Documents

被引:3
作者
Waltl, Bernhard [1 ]
Landthaler, Joerg [1 ]
Matthes, Florian [1 ]
机构
[1] Tech Univ Munich, Software Engn Business Informat Syst, Boltzmannstr 3, D-85748 Garching, Germany
来源
LEGAL KNOWLEDGE AND INFORMATION SYSTEMS | 2016年 / 294卷
关键词
References; reference types; citations; citation types; natural language processing; regular expression; data analysis; text mining; legal data science;
D O I
10.3233/978-1-61499-726-9-211
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an extensible model distinguishing between reference types within legal documents. It differentiates between four types of references, namely fully-explicit, semi-explicit, implicit, and tacit references. We conducted a case study on German laws to evaluate both: the model and the proposed differentiation of reference types. We adapted text mining algorithms to determine and classify the different references according to their type. The evaluation shows that the consideration of additional reference types heavily impacts the resulting network structure by inducing a plethora of new edges and relationships. This work extends the approaches made in network analysis and argues for the necessity of detailed differentiation between references throughout legal documents.
引用
收藏
页码:211 / 214
页数:4
相关论文
共 10 条
[1]  
Berger A., 1971, INFORMATIONSSYSTEME, V3
[2]  
Boulet R., 2012, CORR
[3]  
Bundesministerium der Justiz und Verbraucherschutz, 2008, HDB RECHTSF
[4]  
Debus A. G., 2008, VERWEISUNGEN DTSCH R
[5]  
Landthaler J., 2016, UNVEILING REFERENCES
[6]  
Larenz Karl., 1995, Methodenlehre der Rechtswissenschaft, V3
[7]  
Michael J., 2009, P 12 INT C ART INT L
[8]  
Waltl B., 2016, LEXIA DATA SCI ENV S
[9]   Towards a Legal Recommender System [J].
Winkels, Radboud ;
Boer, Alexander ;
Vredebregt, Bart ;
van Someren, Alexander .
LEGAL KNOWLEDGE AND INFORMATION SYSTEMS, 2014, 271 :169-178
[10]  
Zhang P., 2007, Proceedings of the 11th international conference on Artificial intelligence and law, P123, DOI DOI 10.1145/1276318.1276342