Bose-Hubbard model on a star lattice

被引:4
作者
Isakov, Sergei V. [1 ]
Sengupta, K. [2 ]
Kim, Yong Baek [3 ,4 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Indian Assoc Cultivat Sci, Theoret Phys Div, Kolkata 700032, India
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[4] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 21期
基金
瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
boson systems; chemical potential; critical exponents; Hubbard model; magnetic transitions; metal-insulator transition; Monte Carlo methods; X-Y model; PHASE-TRANSITION; CRITICALITY; SUPERFLUID;
D O I
10.1103/PhysRevB.80.214503
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the Bose-Hubbard model of hardcore bosons with nearest-neighbor hopping and repulsive interactions on a star lattice using both quantum Monte Carlo simulation and dual vortex theory. We obtain the phase diagram of this model as a function of the chemical potential and the relative strength of hopping and interaction. In the strong-interaction regime, we find that the Mott phases of the model at 1/2 and 1/3 fillings, in contrast to their counterparts on square, triangular, and kagome lattices, are either translationally invariant resonant valence bond (RVB) phases with no density-wave order or have coexisting density-wave and RVB orders. We also find that upon increasing the relative strength of hopping and interaction, the translationally invariant Mott states undergo direct second-order superfluid-insulator quantum phase transitions. We compute the critical exponents for these transitions and argue using the dual vortex picture that the transitions, when approached through the tip of the Mott lobe, belong to the inverted XY universality class.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Dynamical mean-field theory for the Bose-Hubbard model
    Hu, Wen-Jun
    Tong, Ning-Hua
    PHYSICAL REVIEW B, 2009, 80 (24):
  • [32] Spatio-Temporal Spreading of Correlations in the Bose-Hubbard Model
    Kennett, Malcolm P.
    Fitzpatrick, Matthew R. C.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (1-2) : 82 - 89
  • [33] Supersolid States in a Hard-Core Bose-Hubbard Model on a Layered Triangular Lattice
    Suzuki, Ryota
    Koga, Akihisa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (06)
  • [34] Phase diagram of the Bose-Hubbard model on complex networks
    Halu, Arda
    Ferretti, Luca
    Vezzani, Alessandro
    Bianconi, Ginestra
    EPL, 2012, 99 (01)
  • [35] Phases of the disordered Bose-Hubbard model with attractive interactions
    Mansikkamaki, Olli
    Laine, Sami
    Silveri, Matti
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [36] Bose-Hubbard model with occupation-dependent parameters
    Dutta, O.
    Eckardt, A.
    Hauke, P.
    Malomed, B.
    Lewenstein, M.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [37] The one-dimensional extended Bose-Hubbard model
    Pai, RV
    Pandit, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 2003, 115 (5-6): : 721 - 726
  • [38] The one-dimensional extended Bose-Hubbard model
    Ramesh V. Pai
    Rahul Pandit
    Journal of Chemical Sciences, 2003, 115 (5-6) : 721 - 726
  • [39] Dynamics of disordered states in the Bose-Hubbard model with confinement
    Yan, Mi
    Hui, Hoi-Yin
    Scarola, V. W.
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [40] Perturbative calculation of critical exponents for the Bose-Hubbard model
    Hinrichs, Dennis
    Pelster, Axel
    Holthaus, Martin
    APPLIED PHYSICS B-LASERS AND OPTICS, 2013, 113 (01): : 57 - 67