Bose-Hubbard model on a star lattice

被引:4
|
作者
Isakov, Sergei V. [1 ]
Sengupta, K. [2 ]
Kim, Yong Baek [3 ,4 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Indian Assoc Cultivat Sci, Theoret Phys Div, Kolkata 700032, India
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[4] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 21期
基金
瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
boson systems; chemical potential; critical exponents; Hubbard model; magnetic transitions; metal-insulator transition; Monte Carlo methods; X-Y model; PHASE-TRANSITION; CRITICALITY; SUPERFLUID;
D O I
10.1103/PhysRevB.80.214503
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the Bose-Hubbard model of hardcore bosons with nearest-neighbor hopping and repulsive interactions on a star lattice using both quantum Monte Carlo simulation and dual vortex theory. We obtain the phase diagram of this model as a function of the chemical potential and the relative strength of hopping and interaction. In the strong-interaction regime, we find that the Mott phases of the model at 1/2 and 1/3 fillings, in contrast to their counterparts on square, triangular, and kagome lattices, are either translationally invariant resonant valence bond (RVB) phases with no density-wave order or have coexisting density-wave and RVB orders. We also find that upon increasing the relative strength of hopping and interaction, the translationally invariant Mott states undergo direct second-order superfluid-insulator quantum phase transitions. We compute the critical exponents for these transitions and argue using the dual vortex picture that the transitions, when approached through the tip of the Mott lobe, belong to the inverted XY universality class.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Exotic Ising dynamics in a Bose-Hubbard model
    Seabra, Luis
    Pollmann, Frank
    PHYSICAL REVIEW B, 2013, 88 (12)
  • [22] Quantum Monte Carlo method for the Bose-Hubbard model with harmonic confining potential
    Kato, Yasuyuki
    Kawashima, Naoki
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [23] Excitation and dynamics in the extended Bose-Hubbard model
    Gremaud, Benoit
    Batrouni, George G.
    PHYSICAL REVIEW B, 2016, 93 (03):
  • [24] Phase diagram of the extended Bose-Hubbard model
    Rossini, Davide
    Fazio, Rosario
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [25] Extended Bose-Hubbard model with dipolar excitons
    Lagoin, C.
    Bhattacharya, U.
    Grass, T.
    Chhajlany, R. W.
    Salamon, T.
    Baldwin, K.
    Pfeiffer, L.
    Lewenstein, M.
    Holzmann, M.
    Dubin, F.
    NATURE, 2022, 609 (7927) : 485 - 489
  • [26] Projection operator approach to the Bose-Hubbard model
    Dutta, Anirban
    Trefzger, C.
    Sengupta, K.
    PHYSICAL REVIEW B, 2012, 86 (08)
  • [27] Coherent shift of localized bound pairs in the Bose-Hubbard model
    Jin, L.
    Chen, B.
    Song, Z.
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [28] Gutzwiller approach to the Bose-Hubbard model with random local impurities
    Buonsante, Pierfrancesco
    Massel, Francesco
    Penna, Vittorio
    Vezzani, Alessandro
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [29] Dynamical mean-field theory for the Bose-Hubbard model
    Hu, Wen-Jun
    Tong, Ning-Hua
    PHYSICAL REVIEW B, 2009, 80 (24):
  • [30] Spatio-Temporal Spreading of Correlations in the Bose-Hubbard Model
    Kennett, Malcolm P.
    Fitzpatrick, Matthew R. C.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (1-2) : 82 - 89