Bose-Hubbard model on a star lattice

被引:4
作者
Isakov, Sergei V. [1 ]
Sengupta, K. [2 ]
Kim, Yong Baek [3 ,4 ]
机构
[1] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Indian Assoc Cultivat Sci, Theoret Phys Div, Kolkata 700032, India
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[4] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 21期
基金
瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
boson systems; chemical potential; critical exponents; Hubbard model; magnetic transitions; metal-insulator transition; Monte Carlo methods; X-Y model; PHASE-TRANSITION; CRITICALITY; SUPERFLUID;
D O I
10.1103/PhysRevB.80.214503
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the Bose-Hubbard model of hardcore bosons with nearest-neighbor hopping and repulsive interactions on a star lattice using both quantum Monte Carlo simulation and dual vortex theory. We obtain the phase diagram of this model as a function of the chemical potential and the relative strength of hopping and interaction. In the strong-interaction regime, we find that the Mott phases of the model at 1/2 and 1/3 fillings, in contrast to their counterparts on square, triangular, and kagome lattices, are either translationally invariant resonant valence bond (RVB) phases with no density-wave order or have coexisting density-wave and RVB orders. We also find that upon increasing the relative strength of hopping and interaction, the translationally invariant Mott states undergo direct second-order superfluid-insulator quantum phase transitions. We compute the critical exponents for these transitions and argue using the dual vortex picture that the transitions, when approached through the tip of the Mott lobe, belong to the inverted XY universality class.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
Balents L, 2005, PROG THEOR PHYS SUPP, P314, DOI 10.1143/PTPS.160.314
[2]   Putting competing orders in their place near the Mott transition [J].
Balents, L ;
Bartosch, L ;
Burkov, A ;
Sachdev, S ;
Sengupta, K .
PHYSICAL REVIEW B, 2005, 71 (14)
[3]   Putting competing orders in their place near the Mott transition. II. The doped quantum dimer model [J].
Balents, L ;
Bartosch, L ;
Burkov, A ;
Sachdev, S ;
Sengupta, K .
PHYSICAL REVIEW B, 2005, 71 (14)
[4]   Worm algorithm for continuous-space path integral Monte Carlo simulations [J].
Boninsegni, M ;
Prokof'ev, N ;
Svistunov, B .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[5]   Superfluid-insulator transitions on the triangular lattice [J].
Burkov, AA ;
Balents, L .
PHYSICAL REVIEW B, 2005, 72 (13)
[6]   Classification of quantum phases for the star-lattice antiferromagnet via a projective symmetry group analysis [J].
Choy, Ting-Pong ;
Kim, Yong Baek .
PHYSICAL REVIEW B, 2009, 80 (06)
[7]   PHASE-TRANSITION IN A LATTICE MODEL OF SUPERCONDUCTIVITY [J].
DASGUPTA, C ;
HALPERIN, BI .
PHYSICAL REVIEW LETTERS, 1981, 47 (21) :1556-1560
[8]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[9]   FIRST-ORDER PHASE-TRANSITIONS IN SUPERCONDUCTORS AND SMECTIC-A LIQUID-CRYSTALS [J].
HALPERIN, BI ;
LUBENSKY, TC ;
MA, SK .
PHYSICAL REVIEW LETTERS, 1974, 32 (06) :292-295
[10]   Persistent supersolid phase of hard-core bosons on the triangular lattice [J].
Heidarian, D ;
Damle, K .
PHYSICAL REVIEW LETTERS, 2005, 95 (12)