Orthogonal Stability and Nonstability of a Generalized Quartic Functional Equation in Quasi-β-Normed Spaces

被引:2
作者
Alessa, Nazek [1 ]
Tamilvanan, K. [2 ]
Loganathan, K. [3 ]
Karthik, T. S. [4 ]
Rassias, John Michael [5 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Fac Sci, Riyadh, Saudi Arabia
[2] Govt Arts Coll Men, Dept Math, Krishnagiri 635001, Tamil Nadu, India
[3] Live4Research, Res & Dev Wing, Tiruppur 638106, Tamil Nadu, India
[4] Aditya Coll Engn & Technol, Dept Elect & Commun Engn, Surampalem 533437, Andhra Pradesh, India
[5] Natl & Kapodistrian Univ Athens, Pedag Dept Math & Informat, 4 Agamemnonos Str, Aghia Paraskevi 15342, Attikis, Greece
关键词
HYERS-ULAM STABILITY; APPROXIMATELY LINEAR MAPPINGS;
D O I
10.1155/2021/5577833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we examine the generalized Hyers-Ulam orthogonal stability of the quartic functional equation in quasi-beta-normed spaces. Moreover, we prove that this functional equation is not stable in a special condition by a counterexample.
引用
收藏
页数:7
相关论文
共 31 条
[1]  
Alessa N., 2020, AIMS MATH, V6, P2385
[2]  
[Anonymous], 1992, DISCUSS MATH
[3]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI DOI 10.2969/JMSJ/00210064
[4]   Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) [J].
Cao, Huai-Xin ;
Lv, Ji-Rong ;
Rassias, J. M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[5]  
Chung Jukang K., 2003, [Bulletin of the KMS, 대한수학회보], V40, P565
[6]  
El-Fassi I, 2016, THAI J MATH, V14, P151
[7]   ON THE GENERALIZED ORTHOGONAL STABILITY OF THE PEXIDERIZED QUADRATIC FUNCTIONAL EQUATIONS IN MODULAR SPACES [J].
El-Fassi, Iz-Iddine ;
Kabbaj, Samir .
MATHEMATICA SLOVACA, 2017, 67 (01) :165-178
[8]   GENERALIZED HYERS-ULAM STABILITY FOR A GENERAL CUBIC FUNCTIONAL EQUATION IN QUASI-beta-NORMED SPACES [J].
Eskandani, G. Z. ;
Rassias, J. M. ;
Gavruta, P. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (03) :413-425
[9]   Generalized Hyers-Ulam Stability for a General Mixed Functional Equation in Quasi-β-normed Spaces [J].
Eskandani, G. Zamani ;
Gavruta, Pasc ;
Rassias, John M. ;
Zarghami, Ramazan .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2011, 8 (03) :331-348