Evaporation efficiency monitoring device based on biomass photothermal material for salt-resistant solar-driven interfacial evaporation

被引:55
|
作者
Li, Jiyan [1 ]
Zhou, Xu [1 ]
Chen, Guibiao [2 ]
Wang, Fei [1 ]
Mao, Jialong [1 ]
Long, Yong [1 ]
Sun, Hanxue [1 ]
Zhu, Zhaoqi [1 ]
Liang, Weidong [1 ]
Li, An [1 ]
机构
[1] Lanzhou Univ Technol, Coll Petrochem Technol, Lanzhou 730050, Peoples R China
[2] PowerChina Kunming Engn Corp Ltd, Kunming 650051, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Evaporation efficiency monitoring device; Biomass; Photothermal materials; Solar steam generation; Salt-rejection; STEAM-GENERATION; WATER EVAPORATION; MEMBRANE; CRYSTALLIZATION; WOOD;
D O I
10.1016/j.solmat.2020.110941
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar-driven interface evaporation has received much attention due to its high-efficiency photothermal conversion efficiency. However, in practical application, it is difficult to monitor whether the evaporation efficiency of photothermal conversion materials can maintain high efficiency and stability for a long time. In this paper, taking surface modified coconut fiber (SCF) as photothermal material, we designed a set of evaporation efficiency monitoring device (EEMD) and demonstrated the strategy of building a solar evaporation efficiency monitoring system. The SCF shows superhydrophilic wettability, and its vertical multi-stage open-framework structure is benefit to the rapid transport of water. Under 1 kW m(-2) illumination, evaporation rate of SCF is 1.5 kg m(-2) h(-1), evaporation efficiency is 90.2%. In 20% NaCl, evaporation rate of SCF is 1.37 kg m(-2) h(-1), and energy conversion efficiency is 85.3%. In order to monitor the stability of evaporator efficiency, we designed a simple EEMD which applied platinum wire electrode to monitor the change of electric potential in the evaporator. The results show that the electric potential is positively correlated with the evaporation efficiency. EEMD provides a new monitoring method for the efficient and stable operation of solar evaporator.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Polypyrrole Coated Textiles as Photothermal Material for Interfacial Solar Evaporation
    Maity, Subhankar
    Yadav, Madhu
    Patra, Arun Kumar
    FIBERS AND POLYMERS, 2023, 24 (10) : 3591 - 3600
  • [42] Polypyrrole Coated Textiles as Photothermal Material for Interfacial Solar Evaporation
    Subhankar Maity
    Madhu Yadav
    Arun Kumar Patra
    Fibers and Polymers, 2023, 24 : 3591 - 3600
  • [43] Large-scale production of spent coffee ground-based photothermal materials for high-efficiency solar-driven interfacial evaporation
    Shi, Congcan
    Zhang, Xue
    Nilghaz, Azadeh
    Wu, Zhenhua
    Wang, Tao
    Zhu, Bocheng
    Tang, Guiming
    Su, Bin
    Tian, Junfei
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [44] Scalable and biomimetic anti-oil-fouling photothermal fabric for efficient solar-driven interfacial evaporation
    Xu, Yuxia
    Xu, Ting
    Guo, Yang
    Liu, Weiping
    Wang, Juan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 312
  • [45] Progress in MXene-based photothermal materials for solar-driven water evaporation and desalination
    Wen, Cuilian
    Li, Xiong
    Yan, Siqing
    Wen, Jiansen
    Zheng, Rongtao
    Wang, Xinyi
    Zhao, Haonan
    Zhou, Jian
    Sa, Baisheng
    Sun, Zhimei
    CHEMICAL ENGINEERING JOURNAL, 2025, 510
  • [46] Cost Effective Photothermal Materials Selection for Direct Solar-Driven Evaporation
    Eltigani, Husam
    Chobaomsup, Viriyah
    Boonyongmaneerat, Yuttanant
    ACS OMEGA, 2024, 9 (26): : 27872 - 27887
  • [47] Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges
    Li, Lingxiao
    Zhang, Junping
    NANO ENERGY, 2021, 81
  • [48] Enhanced Solar-to-Heat Efficiency of Photothermal Materials Containing an Additional Light-Reflection Layer for Solar-Driven Interfacial Water Evaporation
    Fan, Yukang
    Tian, Zhuoyue
    Wang, Fei
    He, Jingxian
    Ye, Xingyun
    Zhu, Zhaoqi
    Sun, Hanxue
    Liang, Weidong
    Li, An
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (03) : 2932 - 2943
  • [49] Solar-driven evaporation based on regulation salt crystallization behavior for high-efficiency freshwater production and salt collection
    Zhao, Hailan
    Mu, Xiaojiang
    Yin, Lu
    Zhang, Zhixiang
    Long, Yang
    Wang, Yitong
    Wang, Xiaoyang
    Zhou, Jianhua
    Miao, Lei
    DESALINATION, 2025, 602
  • [50] A loofah-based photothermal biomass material with high salt-resistance for efficient solar water evaporation
    Jia, Xiaodong
    Liu, Xianfeng
    Guan, Hengshu
    Fan, Tingting
    Chen, Yong
    Long, Yun-Ze
    COMPOSITES COMMUNICATIONS, 2023, 37