Evaporation efficiency monitoring device based on biomass photothermal material for salt-resistant solar-driven interfacial evaporation

被引:55
|
作者
Li, Jiyan [1 ]
Zhou, Xu [1 ]
Chen, Guibiao [2 ]
Wang, Fei [1 ]
Mao, Jialong [1 ]
Long, Yong [1 ]
Sun, Hanxue [1 ]
Zhu, Zhaoqi [1 ]
Liang, Weidong [1 ]
Li, An [1 ]
机构
[1] Lanzhou Univ Technol, Coll Petrochem Technol, Lanzhou 730050, Peoples R China
[2] PowerChina Kunming Engn Corp Ltd, Kunming 650051, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Evaporation efficiency monitoring device; Biomass; Photothermal materials; Solar steam generation; Salt-rejection; STEAM-GENERATION; WATER EVAPORATION; MEMBRANE; CRYSTALLIZATION; WOOD;
D O I
10.1016/j.solmat.2020.110941
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar-driven interface evaporation has received much attention due to its high-efficiency photothermal conversion efficiency. However, in practical application, it is difficult to monitor whether the evaporation efficiency of photothermal conversion materials can maintain high efficiency and stability for a long time. In this paper, taking surface modified coconut fiber (SCF) as photothermal material, we designed a set of evaporation efficiency monitoring device (EEMD) and demonstrated the strategy of building a solar evaporation efficiency monitoring system. The SCF shows superhydrophilic wettability, and its vertical multi-stage open-framework structure is benefit to the rapid transport of water. Under 1 kW m(-2) illumination, evaporation rate of SCF is 1.5 kg m(-2) h(-1), evaporation efficiency is 90.2%. In 20% NaCl, evaporation rate of SCF is 1.37 kg m(-2) h(-1), and energy conversion efficiency is 85.3%. In order to monitor the stability of evaporator efficiency, we designed a simple EEMD which applied platinum wire electrode to monitor the change of electric potential in the evaporator. The results show that the electric potential is positively correlated with the evaporation efficiency. EEMD provides a new monitoring method for the efficient and stable operation of solar evaporator.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Numerical Simulation Technologies in Solar-Driven Interfacial Evaporation Processes
    Wei, Yumeng
    Yang, Yawei
    Zhao, Qi
    Ma, Yong
    Qiang, Mengyuan
    Fu, Linjing
    Liu, Yihong
    Zhang, Jianfei
    Qu, Zhiguo
    Que, Wenxiu
    SMALL, 2024, 20 (32)
  • [22] Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges
    Li, Jiyan
    Jing, Yanju
    Xing, Guoyu
    Liu, Meichen
    Cui, Yang
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (36) : 18470 - 18489
  • [23] Hydrodynamic solar-driven interfacial evaporation - Gone with the flow
    Ren, Jiawei
    Xu, Jia
    Tian, Shuangchao
    Shi, Ke
    Gu, Tianyu
    Zhao, Jiaheng
    Li, Xing
    Zhou, Zhiwei
    Tijing, Leonard
    Shon, Ho Kyong
    WATER RESEARCH, 2024, 266
  • [24] Solar-driven interfacial evaporation of a hanging liquid marble
    Yao, Guansheng
    Xu, Jinliang
    Feng, Yijun
    Wang, Lin
    Liu, Guohua
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 234
  • [25] Hydrogel-Based Interfacial Solar-Driven Evaporation: Essentials and Trails
    Hu, Xiaoyun
    Yang, Jianfang
    Tu, Yufei
    Su, Zhen
    Guan, Qingqing
    Ma, Zhiwei
    GELS, 2024, 10 (06)
  • [26] Portable water collection bag based on solar-driven interfacial evaporation
    Jia, Ye
    Kong, Lingxue
    Zhang, Tengdi
    Wang, Yuping
    Liu, Anmin
    Gao, Liguo
    Ma, Tingli
    ENVIRONMENTAL TECHNOLOGY, 2025,
  • [27] Experimental study of the solar-driven interfacial evaporation based on a novel magnetic nano solar absorber
    Yang, Ying
    Xu, Guoying
    Huang, Shifang
    Yin, Yonggao
    APPLIED THERMAL ENGINEERING, 2022, 217
  • [28] A review: Solar-driven water evaporation based on biomass carbon materials
    Wang, Jiani
    Lian, Yue
    Shao, Jingling
    Cheng, Siwei
    Zhao, He
    Zhou, Cangjian
    Yu, Guiyun
    Dai, Yong
    Zhang, Huaihao
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 217
  • [29] Upcycled graphene integrated fiber-based photothermal hybrid nanocomposites for solar-driven interfacial water evaporation
    Khoei, Jalal Karimzadeh
    Bafqi, Mohammad Sajad Sorayani
    Saeidiharzand, Shaghayegh
    Mohammadilooey, Mandana
    Hezarkhani, Marjan
    Okan, Burcu Saner
    Kosar, Ali
    Sadaghiani, Abdolali K.
    DESALINATION, 2023, 562
  • [30] Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination
    Li, Congcong
    Zhu, Bo
    Liu, Zixiao
    Zhao, Jiangtong
    Meng, Ruru
    Zhang, Lisha
    Chen, Zhigang
    CHEMICAL ENGINEERING JOURNAL, 2022, 431