Being sensitive to uncertainty

被引:20
作者
Arriola, Leon M. [1 ]
Hyman, James M.
机构
[1] Univ Wisconsin, Whitewater, WI 53190 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
(Edited Abstract);
D O I
10.1109/MCSE.2007.27
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Predictive modeling's effectiveness is hindered by inherent uncertainties in the input parameters. Sensitivity and uncertainty analysis quantify these uncertainties and identify the relationships between input and output variations, leading to the construction of a more accurate model. This survey introduces the application, implementation, and underlying principles of sensitivity and uncertainty quantification.
引用
收藏
页码:10 / 20
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 1995, ADJOINT EQUATIONS AN, DOI DOI 10.1007/978-94-017-0621-6
[2]  
Cacuci D. G., 2005, Sensitivity and uncertainty analysis, volume II: applications to large-scale systems, VII
[3]  
Cacuci D. G., 2003, Sensitivity and Uncertainty Analysis, V1
[4]  
Fu M., 1997, CONDITIONAL MONTE CA
[5]  
Glasserman P., 1991, Gradient Estimation via Perturbation Analysis
[6]  
Griewank A., 2000, EVALUATING DERIVATIV
[7]  
HO YC, 1991, PERTURBATION ANAL DI
[8]  
Marchuk G.I., 1996, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems
[9]  
Rubinstein RY, 1993, Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method, V13
[10]  
Saltelli A., 2004, SENSITIVITY ANAL PRA