Phonon wave propagation in ballistic-diffusive regime

被引:24
作者
Tang, Dao-Sheng [1 ]
Hua, Yu-Chao [1 ]
Nie, Ben-Dian [1 ]
Cao, Bing-Yang [1 ]
机构
[1] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Minist Educ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
HEATED SOLID-SURFACE; ANGULAR-DISTRIBUTION; 2ND SOUND; THERMAL-WAVE; METAL-FILM; TRANSPORT; LIQUID-HE-4; CONDUCTION; MECHANISMS; NANOFILMS;
D O I
10.1063/1.4944646
中图分类号
O59 [应用物理学];
学科分类号
摘要
Wide applications of ultra-short pulse laser technique in micromachining and thermophysical properties' measurements make the study on ultrafast transient thermal transport necessarily essential. When the characteristic time is comparable to the phonon relaxation time, phonons propagate in ballistic-diffusive regime and thermal wave occurs. Here, ultrafast transient phonon transport is systematically investigated based on the Monte Carlo (MC) simulations, the Cattaneo-Vernotte (C-V) model, and the phonon Boltzmann transport equation (BTE). It is found that remarkable differences exist between the C-V model and the MC simulations when describing the evolution of the thermal wave excited by the ultra-short heat pulse. The C-V model predicts a non-dispersive dissipative thermal wave, while the MC simulation with Lambert emission predicts a dispersive dissipative thermal wave. Besides, different phonon emissions can significantly influence the evolution of the thermal wave in the MC simulations. A modified C-V model with a time-and position-dependent effective thermal conductivity is derived based on the phonon BTE to characterize the evolution of the transport regime from ballistic to diffusive. The integrations on moments of the distribution function cause the loss of the information of the phonon distribution in wave vector space, making the macroscopic quantities incomplete when describing the ballistic transport processes and corresponding boundary conditions. Possible boundary conditions for the phonon BTE in practice are also discussed on different heating methods. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] 2ND SOUND IN SOLID HELIUM
    ACKERMAN, CC
    BERTMAN, B
    FAIRBANK, HA
    GUYER, RA
    [J]. PHYSICAL REVIEW LETTERS, 1966, 16 (18) : 789 - &
  • [2] Phonons Created in Superfluid Helium by a Thin Film Gold Heater
    Adamenko, I. N.
    Nemchenko, K. E.
    Slipko, V. A.
    Wyatt, A. F. G.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2009, 157 (5-6) : 509 - 526
  • [3] Boundary Conditions and Evolution of Ballistic Heat Transport
    Alvarez, F. X.
    Jou, D.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (01): : 1 - 6
  • [4] Anisimov S.I., 1974, Sov. Phys. JETP, V39, P375, DOI DOI 10.1016/J.JMATPROTEC.2009.05.031
  • [5] Nanoscale thermal transport. II. 2003-2012
    Cahill, David G.
    Braun, Paul V.
    Chen, Gang
    Clarke, David R.
    Fan, Shanhui
    Goodson, Kenneth E.
    Keblinski, Pawel
    King, William P.
    Mahan, Gerald D.
    Majumdar, Arun
    Maris, Humphrey J.
    Phillpot, Simon R.
    Pop, Eric
    Shi, Li
    [J]. APPLIED PHYSICS REVIEWS, 2014, 1 (01):
  • [6] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [7] Equation of motion of a phonon gas and non-Fourier heat conduction
    Cao, Bing-Yang
    Guo, Zeng-Yuan
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (05)
  • [8] Cattaneo C., 1948, Atti Sem. Mat. Fis. Univ. Modena, V3, P83, DOI [10.1007/978-3-642-11051-1_5, DOI 10.1007/978-3-642-11051-1_5]
  • [9] Cercignani C., 1961, BOLTZMANN EQUATION I
  • [10] Chen G, 2001, PHYS REV LETT, V86, P2297, DOI 10.1103/PhysRevLett86.2297