A Simple Computation of ζ (2k)

被引:6
作者
Ciaurri, Oscar [1 ]
Navas, Luis M. [2 ]
Ruiz, Francisco J. [3 ]
Varona, Juan L. [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Comp, Logrono 26004, Spain
[2] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
[3] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
关键词
EULERS FORMULA; ELEMENTARY PROOF;
D O I
10.4169/amer.math.monthly.122.5.444
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new simple proof of Euler's formulas for zeta(2k), where k = 1, 2, 3,.... The computation is done using only the defining properties of the Bernoulli polynomials and summing a telescoping series. The same method also yields integral formulas for zeta(2k + 1).
引用
收藏
页码:444 / 451
页数:8
相关论文
共 14 条
  • [1] Abramowitz M., 1972, APPL MATH SERIES, V55
  • [2] [Anonymous], COMMUN APPL ANAL
  • [3] ANOTHER ELEMENTARY PROOF OF EULERS FORMULA FOR ZETA (2N)
    APOSTOL, TM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (04) : 425 - 431
  • [4] Benko D., 2012, COLL MATH J, V43, P244
  • [5] Berndt B. C., 1997, Ramanujan's Notebooks
  • [6] POINTWISE CONVERGENCE OF FOURIER-SERIES
    CHERNOFF, PR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05) : 399 - 400
  • [7] Costabile F., 2006, Rend. Mat. Appl., V26, P1
  • [8] ANOTHER PROOF OF EULER'S FORMULA FOR ζ(2k)
    de Amo, E.
    Diaz Carrillo, M.
    Fernandez-Sanchez, J.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) : 1441 - 1444
  • [9] Transcendental values of certain Eichler integrals
    Gun, Sanoli
    Murty, M. Ram
    Rath, Purusottam
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 939 - 952
  • [10] Murty MR, 2011, J RAMANUJAN MATH SOC, V26, P107