A Simple Computation of ζ (2k)

被引:6
作者
Ciaurri, Oscar [1 ]
Navas, Luis M. [2 ]
Ruiz, Francisco J. [3 ]
Varona, Juan L. [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Comp, Logrono 26004, Spain
[2] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
[3] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
关键词
EULERS FORMULA; ELEMENTARY PROOF;
D O I
10.4169/amer.math.monthly.122.5.444
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new simple proof of Euler's formulas for zeta(2k), where k = 1, 2, 3,.... The computation is done using only the defining properties of the Bernoulli polynomials and summing a telescoping series. The same method also yields integral formulas for zeta(2k + 1).
引用
收藏
页码:444 / 451
页数:8
相关论文
共 14 条
[1]  
Abramowitz M., 1972, APPL MATH SERIES, V55
[2]  
[Anonymous], COMMUN APPL ANAL
[3]   ANOTHER ELEMENTARY PROOF OF EULERS FORMULA FOR ZETA (2N) [J].
APOSTOL, TM .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (04) :425-431
[4]  
Benko D., 2012, COLL MATH J, V43, P244
[5]  
Berndt B. C., 1997, Ramanujan's Notebooks
[6]   POINTWISE CONVERGENCE OF FOURIER-SERIES [J].
CHERNOFF, PR .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (05) :399-400
[7]  
Costabile F., 2006, Rend. Mat. Appl., V26, P1
[8]   ANOTHER PROOF OF EULER'S FORMULA FOR ζ(2k) [J].
de Amo, E. ;
Diaz Carrillo, M. ;
Fernandez-Sanchez, J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (04) :1441-1444
[9]   Transcendental values of certain Eichler integrals [J].
Gun, Sanoli ;
Murty, M. Ram ;
Rath, Purusottam .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :939-952
[10]  
Murty MR, 2011, J RAMANUJAN MATH SOC, V26, P107