microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney

被引:84
|
作者
Sriyastava, Swayam Prakash [1 ]
Hedayat, Fahim Ahmad [1 ]
Kanasaki, Keizo [2 ]
Goodwin, Julie E. [1 ]
机构
[1] Yale Univ, Sch Med, Dept Pediat, New Haven, CT 06510 USA
[2] Shimane Univ, Fac Med, Internal Med 1, Izumo, Shimane, Japan
来源
FRONTIERS IN PHARMACOLOGY | 2019年 / 10卷
关键词
microRNAs; diabetic kidney disease; kidney fibrosis; microRNA crosstalk; epithelial-to-mesenchymal transition; endothelial-to-mesenchymal transition; macrophage-to-mesenchymal transition; TRANSFORMING-GROWTH-FACTOR; INDUCED COLLAGEN EXPRESSION; PROMOTES RENAL FIBROSIS; FACTOR RECEPTOR 1; TGF-BETA; DIABETIC-NEPHROPATHY; INTERSTITIAL FIBROSIS; NEXT-GENERATION; NONCODING RNAS; UP-REGULATION;
D O I
10.3389/fphar.2019.00904
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
microRNAs (miRNAs) are small, non-coding nucleotides that regulate diverse biological processes. Altered microRNA biosynthesis or regulation contributes to pathological processes including kidney fibrosis. Kidney fibrosis is characterized by deposition of excess extracellular matrix (ECM), which is caused by infiltration of immune cells, inflammatory cells, altered chemokines, and cytokines as well as activation and accumulation of fibroblasts in the kidney. These activated fibroblasts can arise from epithelial cells via epithelial-to-mesenchymal transition (EMT), from bone marrow-derived M2 phenotype macrophages via macrophage-to-mesenchymal transition (MMT), from endothelial cells via endothelial-to-mesenchymal transition (EndMT), from resident fibroblasts, and from bone marrow-derived monocytes and play a crucial role in fibrotic events. Disrupted microRNA biosynthesis and aberrant regulation contribute to the activation of mesenchymal programs in the kidney. miR-29 regulates the interaction between dipeptidyl peptidase-4 (DPP-4) and integrin beta 1 and the associated active transforming growth factor beta (TGF beta) and pro-EndMT signaling; however, miR-let-7 targets transforming growth factor beta receptors (TGFIRs) to inhibit TGF beta signaling. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous anti-fibrotic peptide, which is associated with fibroblast growth factor receptor 1 (FGFR1) phosphorylation and subsequently responsible for the production of miR-let-7. miR-29 and miR-let-7 family clusters participate in crosstalk mechanisms, which are crucial for endothelial cell homeostasis. The physiological level of AcSDKP is vital for the activation of anti-fibrotic mechanisms including restoration of anti-fibrotic microRNA crosstalk and suppression of profibrotic signaling by mitigating DPP-4-associated mesenchymal activation in the epithelial cells, endothelial cells, and M2 phenotype macrophages. The present review highlights recent advancements in the understanding of both the role of microRNAs in the development of kidney disease and their potential as novel therapeutic targets for fibrotic disease states.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis
    Skovierova, Henrieta
    Okajcekova, Terezia
    Strnadel, Jan
    Vidomanova, Eva
    Halasova, Erika
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 41 (03) : 1187 - 1200
  • [32] Epithelial-to-Mesenchymal Transition and MicroRNAs in Lung Cancer
    Legras, Antoine
    Pecuchet, Nicolas
    Imbeaud, Sandrine
    Pallier, Karine
    Didelot, Audrey
    Roussel, Helene
    Gibault, Laure
    Fabre, Elizabeth
    Le Pimpec-Barthes, Francoise
    Laurent-Puig, Pierre
    Blons, Helene
    CANCERS, 2017, 9 (08):
  • [33] An In Vitro Platform to Study Reversible Endothelial-to-Mesenchymal Transition
    Krishnamoorthi, Muthu Kumar
    Thandavarayan, Rajarajan A. A.
    Youker, Keith A. A.
    Bhimaraj, Arvind
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [34] Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease
    Jianhua He
    Yong Xu
    Daisuke Koya
    Keizo Kanasaki
    Clinical and Experimental Nephrology, 2013, 17 : 488 - 497
  • [35] Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis
    Neelakantan, Deepika
    Drasin, David J.
    Ford, Heide L.
    CELL ADHESION & MIGRATION, 2015, 9 (04) : 265 - 276
  • [36] The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression
    Lo, U-Ging
    Lee, Cheng-Fan
    Lee, Ming-Shyue
    Hsieh, Jer-Tsong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (10)
  • [37] The Epithelial-to-Mesenchymal Transition in Development and Cancer
    Francou, Alexandre
    Anderson, Kathryn V.
    ANNUAL REVIEW OF CANCER BIOLOGY, VOL 4, 2020, 4 : 197 - 220
  • [38] Epithelial-to-mesenchymal transition in tumor progression
    Elena Prieto-García
    C. Vanesa Díaz-García
    Inmaculada García-Ruiz
    M. Teresa Agulló-Ortuño
    Medical Oncology, 2017, 34
  • [39] Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
    Zeisberg, Elisabeth M.
    Tarnavski, Oleg
    Zeisberg, Michael
    Dorfman, Adam L.
    McMullen, Julie R.
    Gustafsson, Erika
    Chandraker, Anil
    Yuan, Xueli
    Pu, William T.
    Roberts, Anita B.
    Neilson, Eric G.
    Sayegh, Mohamed H.
    Izumo, Seigo
    Kalluri, Raghu
    NATURE MEDICINE, 2007, 13 (08) : 952 - 961
  • [40] Endothelial-to-Mesenchymal Transition in Atherosclerosis: Friend or Foe?
    Gole, Sarin
    Tkachenko, Svyatoslav
    Masannat, Tarek
    Baylis, Richard A.
    Cherepanova, Olga A.
    CELLS, 2022, 11 (19)