Origin of branch points in the spectrum of PT-symmetric periodic potentials

被引:7
作者
Chang, Ching-Hao [1 ]
Wang, Shi-Ming [1 ]
Hong, Tzay-Ming [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30043, Taiwan
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 04期
关键词
bifurcation; eigenvalues and eigenfunctions; P invariance; perturbation theory; quantum theory; T invariance; HERMITIAN HAMILTONIANS; REALITY;
D O I
10.1103/PhysRevA.80.042105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There exist multiple branch points in the energy spectrum for some PT-symmetric periodic potentials, where the real eigenvalues turn into complex ones. By studying the transmission amplitude for a localized complex potential, we elucidate the physical origin of the breakdown of the perturbation method and Born approximation. Most importantly, we derive an analytic criterion to determine why, when, and where the bifurcation will occur.
引用
收藏
页数:6
相关论文
共 25 条
[1]   Reflectionless potentials and PT symmetry [J].
Ahmed, Z ;
Bender, CM ;
Berry, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (39) :L627-L630
[2]   Handedness of complex PT-symmetric potential barriers [J].
Ahmed, Z .
PHYSICS LETTERS A, 2004, 324 (2-3) :152-158
[3]   Faster than hermitian quantum mechanics [J].
Bender, Carl M. ;
Brody, Dorje C. ;
Jones, Hugh F. ;
Meister, Bernhard K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (04)
[4]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[5]   Introduction to PT-symmetric quantum theory [J].
Bender, CM .
CONTEMPORARY PHYSICS, 2005, 46 (04) :277-292
[6]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[7]   Complex extension of quantum mechanics (vol 89, art no 270401, 2002) [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2004, 92 (11)
[8]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[9]   Scattering in PT-symmetric quantum mechanics [J].
Cannata, Francesco ;
Dedonder, Jean-Pierre ;
Ventura, Alberto .
ANNALS OF PHYSICS, 2007, 322 (02) :397-433
[10]   Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics [J].
Dorey, P ;
Dunning, C ;
Tateo, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (28) :5679-5704