Gaussian measure of sections of convex bodies

被引:7
作者
Zvavitch, A [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
convex body; Gaussian measure; Busemann-Petty problem;
D O I
10.1016/j.aim.2003.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study properties of sections of convex bodies with respect to the Gaussian measure. We develop a formula connecting the Minkowski functional of a convex symmetric body K with the Gaussian measure of its sections. Using this formula we solve an analog of the Busemann-Petty problem for Gaussian measures. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 136
页数:13
相关论文
共 22 条
[1]   CUBE SLICING IN RN [J].
BALL, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (03) :465-473
[2]  
Bourgain J., 1991, Geom. Funct. Anal., V1, P1, DOI DOI 10.1007/BF01895416
[3]  
Busemann H., 1956, MATH SCAND, V4, P88
[4]   INTERSECTION BODIES AND THE BUSEMANN-PETTY PROBLEM [J].
GARDNER, RJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) :435-445
[5]   A POSITIVE ANSWER TO THE BUSEMANN-PETTY PROBLEM IN 3 DIMENSIONS [J].
GARDNER, RJ .
ANNALS OF MATHEMATICS, 1994, 140 (02) :435-447
[6]   An analytic solution to the Busemann-Petty problem on sections of convex bodies [J].
Gardner, RJ ;
Koldobsky, A ;
Schlumprecht, T .
ANNALS OF MATHEMATICS, 1999, 149 (02) :691-703
[7]  
Gardner RJ., 1995, GEOMETRIC TOMOGRAPHY
[8]  
Gelfand I, 1964, GEN FUNCTIONS, V1
[9]   A NOTE ON A PROBLEM OF BUSEMANN,H. AND PETTY,C.M. CONCERNING SECTIONS OF SYMMETRICAL CONVEX-BODIES [J].
GIANNOPOULOS, AA .
MATHEMATIKA, 1990, 37 (74) :239-244
[10]  
Koldobsky A, 2003, CONTEMP MATH, V320, P225