THE RICCI-BOURGUIGNON FLOW

被引:107
|
作者
Catino, Giovanni [1 ]
Cremaschi, Laura [2 ]
Djadli, Zindine [3 ,4 ]
Mantegazza, Carlo [5 ]
Mazzieri, Lorenzo [6 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[3] Univ Grenoble, Inst Fourier, 100 Rue Maths, F-38402 St Martin Dheres, France
[4] Lab Fibonacci, Piazza Cavalieri 7, I-56126 Pisa, Italy
[5] Univ Napoli Federico II, Dipartimento Matemat & Applicaz, Via Cintia Monte S Angelo, I-80126 Naples, Italy
[6] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, TN, Italy
关键词
Ricci flow; Ricci-Bourguignon flow; short time existence; YAMABE FLOW; CURVATURE; 3-MANIFOLDS; CONVERGENCE; MANIFOLDS; SOLITONS; METRICS;
D O I
10.2140/pjm.2017.287.337
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some results on a family of geometric flows introduced by J. P. Bourguignon in 1981 that generalize the Ricci flow. For suitable values of the scalar parameter involved in these flows, we prove short time existence and provide curvature estimates. We also state some results on the associated solitons.
引用
收藏
页码:337 / 370
页数:34
相关论文
共 50 条