The new database of the Global Terrestrial Network for Permafrost (GTN-P)

被引:105
作者
Biskaborn, B. K. [1 ]
Lanckman, J. -P. [2 ]
Lantuit, H. [1 ,3 ]
Elger, K. [4 ]
Streletskiy, D. A. [5 ]
Cable, W. L. [6 ]
Romanovsky, V. E. [6 ,7 ]
机构
[1] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Potsdam, Germany
[2] Arctic Portal, Akureyri, Iceland
[3] Univ Potsdam, Inst Earth & Environm Sci, Potsdam, Germany
[4] Potsdam GFZ German Res Ctr Geosci, Helmholtz Ctr, Potsdam, Germany
[5] George Washington Univ, Dept Geog, Washington, DC USA
[6] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
[7] Earth Cryosphere Inst, Tyumen, Russia
基金
美国国家科学基金会;
关键词
THERMAL STATE; ACTIVE-LAYER; CARBON;
D O I
10.5194/essd-7-245-2015
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness (ALT) data from Arctic, Antarctic and mountain permafrost regions. The purpose of GTN-P is to establish an early warning system for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we introduce the GTN-P database and perform statistical analysis of the GTN-P metadata to identify and quantify the spatial gaps in the site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the data management system in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies based on national correspondents. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi tessellation analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides a potential method to locate additional permafrost research sites by improving the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations, which are illustrated with maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high representation of areas with smaller expected temperature rise but a lower number of sites within Arctic areas where climate models project extreme temperature increase. GTN-P metadata used in this paper are available at doi:10.1594/PANGAEA.842821.
引用
收藏
页码:245 / 259
页数:15
相关论文
共 40 条
  • [11] Brown J., 2000, Polar Geography, V3, P165, DOI DOI 10.1080/10889370009377698
  • [12] Report from the International Permafrost Association: The IPY Permafrost Legacy
    Brown, Jerry
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2010, 21 (02) : 215 - 218
  • [13] Burgess M., 2000, CURRENT RES
  • [14] Spherical projections with OSXStereonet
    Cardozo, Nestor
    Allmendinger, Richard W.
    [J]. COMPUTERS & GEOSCIENCES, 2013, 51 : 193 - 205
  • [15] The Thermal State of Permafrost in the Nordic Area during the International Polar Year 2007-2009
    Christiansen, H. H.
    Etzelmuller, B.
    Isaksen, K.
    Juliussen, H.
    Farbrot, H.
    Humlum, O.
    Johansson, M.
    Ingeman-Nielsen, T.
    Kristensen, L.
    Hjort, J.
    Holmlund, P.
    Sannel, A. B. K.
    Sigsgaard, C.
    Akerman, H. J.
    Foged, N.
    Blikra, L. H.
    Pernosky, M. A.
    Odegard, R. S.
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2010, 21 (02) : 156 - 181
  • [16] DUE Permafrost Project Consortium, 2012, ESA DAT US EL DUE PE, DOI [10.1594/PANGAEA.780111, DOI 10.1594/PANGAEA.780111]
  • [17] French HM., 2007, PERIGLACIAL ENV, p458 pp
  • [18] Ongoing climatic change in Northern Eurasia: justification for expedient research
    Groisman, Pavel
    Soja, Amber J.
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2009, 4 (04):
  • [19] Grosse G., 2011, EOS T AM GEOPHYS UN, V92, P73, DOI [10.1029/2011EO090001, DOI 10.1029/2011EO090001]
  • [20] GTN-P, 2015, GTN P MET PERM BOR T, DOI [10.1594/PANGAEA.842821, DOI 10.1594/PANGAEA.842821]