Electrocatalytic activity of dispersed platinum and silver alloys and manganese oxides for the oxygen reduction in alkaline electrolyte

被引:24
作者
Lima, F. H. B. [1 ]
Calegaro, M. L. [1 ]
Ticianelli, E. A. [1 ]
机构
[1] Univ Sao Paulo, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
oxygen reduction; platinum alloys; silver alloys; manganese oxides; x-ray absorption spectroscopy;
D O I
10.1134/S1023193506120032
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work reviews the studies conducted in this laboratory of the oxygen reduction reaction (ORR) on electrocatalysts formed by Pt-M/C (M = V, Cr, Co) and Ag-Pt/C alloys and on different Mn oxides (MnO/C, Mn3O4/C, MnO2/C) in KOH electrolyte. The physical and electronic properties of the materials are investigated by in situ XAS (x-ray absorption spectroscopy) in the XANES (x-ray absorption near edge structure) region. The electrocatalytic activity for the ORR on the different catalysts is compared through mass-transport-corrected Tafel plots. The XANES results for the Pt-M/C and Ag-Pt/C composites at high electrode potentials show lower vacancy of the Pt 5d band compared to pure Pt/C, while for the results indicate a chance of the Mn oxidation state as a function of the electrode potential. The electrochemical measurements evidence increased electrocatalytic activity of the Pt alloys compared to pure Pt and this is attributed to a lowering of the adsorption strength of adsorbed oxygen species caused by the reduced Pt reactivity. An activity enhancement of the Ag atoms on the Ag-Pt/C alloys compared to pure Ag is ascribed to an electronic effect induced by the presence of Pt, increasing the Ag-O adsorption strength. In the case of the MnyOx/C materials, the electrochemical results show low activity for MnO/C and higher activity for MnO2/C and Mn3O4/C. This is explained based on the activation for the ORR, which is higher for the material with higher MnO2 contents and the occurrence of a mediation processes involving the reduction of Mn(IV) to Mn(III), followed by the electron transfer of Mn(III) to oxygen.
引用
收藏
页码:1283 / 1290
页数:8
相关论文
共 35 条
[1]   Mn3O4 and γ-MnOOH powders, preparation, phase composition and XPS characterisation [J].
Ardizzone, S ;
Bianchi, CL ;
Tirelli, D .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1998, 134 (03) :305-312
[2]   An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen [J].
Aricò, AS ;
Shukla, AK ;
Kim, H ;
Park, S ;
Min, M ;
Antonucci, V .
APPLIED SURFACE SCIENCE, 2001, 172 (1-2) :33-40
[3]   ELECTROCHEMICAL BEHAVIOR OF METALLIC OXIDES [J].
BRENET, JP .
JOURNAL OF POWER SOURCES, 1979, 4 (03) :183-190
[4]  
CALEGARO ML, IN PRESS J POWER SOU
[5]   The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution [J].
Cao, YL ;
Yang, HX ;
Ai, XP ;
Xiao, LF .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 557 :127-134
[6]   Silver-platinum bimetallic catalysts for oxygen cathodes in chlor-alkali electrolysis - Comparison with pure platinum [J].
Chatenet, M ;
Aurousseau, M ;
Durand, R ;
Andolfatto, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) :D47-D55
[7]   Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide - comparison with platinum [J].
Chatenet, M ;
Genies-Bultel, L ;
Aurousseau, M ;
Durand, R ;
Andolfatto, F .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (10) :1131-1140
[8]  
FARGES F, 2005, PHYS REV B, V71, P155
[9]   Electronic factors determining the reactivity of metal surfaces [J].
Hammer, B ;
Norskov, JK .
SURFACE SCIENCE, 1995, 343 (03) :211-220
[10]   MnOx/C composites as electrode materials II.: Reduction of oxygen on bifunctional catalysts based on manganese oxides [J].
Klápste, B ;
Vondrák, J ;
Velická, J .
ELECTROCHIMICA ACTA, 2002, 47 (15) :2365-2369