Twisting of Fibers Balancing the Gel-Sol Transition in Cellulose Aqueous Suspensions

被引:8
作者
Zlenko, Dmitry V. [1 ,2 ]
Nikolsky, Sergey N. [2 ]
Vedenkin, Alexander S. [2 ]
Politenkova, Galina G. [2 ]
Skoblin, Aleksey A. [2 ]
Melnikov, Valery P. [2 ]
Mikhaleva, Maria G. [2 ]
Stovbun, Sergey V. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Biol, Lenin Hills 1-12, Moscow 119192, Russia
[2] RAS, NN Semenov Inst Chem Phys, Kosygina 4, Moscow 119991, Russia
关键词
cellulose hydrogel; cellulose films; twisting; dispersing; ATOMIC-FORCE MICROSCOPY; HYDROGELS; ULTRASTRUCTURE; MICROFIBRILS; FIBRILS; COLOR;
D O I
10.3390/polym11050873
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cellulose hydrogels and films are advantageous materials that are applied in modern industry and medicine. Cellulose hydrogels have a stable scaffold and never form films upon drying, while viscous cellulose hydrosols are liquids that could be used for film production. So, stabilizing either a gel or sol state in cellulose suspensions is a worthwhile challenge, significant for the practical applications. However, there is no theory describing the cellulose fibers' behavior and processes underlying cellulose-gel-scaffold stabilizing. In this work, we provide a phenomenological mechanism explaining the transition between the stable-gel and shapeless-sol states in a cellulose suspension. We suppose that cellulose macromolecules and nanofibrils under strong dispersing treatment (such as sonication) partially untwist and dissociate, and then reassemble in a 3D scaffold having the individual elements twisted in the nodes. The latter leads to an exponential increase in friction forces between the fibers and to the corresponding fastening of the scaffold. We confirm our theory by the data on the circular dichroism of the cellulose suspensions, as well as by the direct scanning electron microscope (SEM) observations and theoretical assessments.
引用
收藏
页数:11
相关论文
共 47 条
[21]   Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review [J].
Lavoine, Nathalie ;
Desloges, Isabelle ;
Dufresne, Alain ;
Bras, Julien .
CARBOHYDRATE POLYMERS, 2012, 90 (02) :735-764
[22]   Cellulose Nanoparticles: Structure-Morphology-Rheology Relationships [J].
Li, Mei-Chun ;
Wu, Qinglin ;
Song, Kunlin ;
Lee, Sunyoung ;
Qing, Yan ;
Wu, Yiqiang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (05) :821-832
[23]   Structure-color mechanism of iridescent cellulose nanocrystal films [J].
Liu, Dagang ;
Wang, Shuo ;
Ma, Zhongshi ;
Tian, Donglin ;
Gu, Mingyue ;
Lin, Fengying .
RSC ADVANCES, 2014, 4 (74) :39322-39331
[24]   SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions [J].
Majoinen, Johanna ;
Kontturi, Eero ;
Ikkala, Olli ;
Gray, Derek G. .
CELLULOSE, 2012, 19 (05) :1599-1605
[25]   Helicity inversion in responsive foldamers induced by achiral halide ion guests [J].
Meudtner, Robert M. ;
Hecht, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (26) :4926-4930
[26]   Cellulose reinforced polymer composites and nanocomposites: a critical review [J].
Miao, Chuanwei ;
Hamad, Wadood Y. .
CELLULOSE, 2013, 20 (05) :2221-2262
[27]   Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers [J].
Mittal, Nitesh ;
Ansari, Farhan ;
Gowda, Krishne, V ;
Brouzet, Christophe ;
Chen, Pan ;
Larsson, Per Tomas ;
Roth, Stephan V. ;
Lundell, Fredrik ;
Wagberg, Lars ;
Kotov, Nicholas A. ;
Soderberg, L. Daniel .
ACS NANO, 2018, 12 (07) :6378-6388
[28]   ULTRASTRUCTURE AND FORMATION OF PLANT CELL WALLS [J].
MUHLETHALER, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY, 1967, 18 :1-+
[29]   Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths [J].
Newman, RH .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 1999, 15 (01) :21-29
[30]   The fibrils untwisting limits the rate of cellulose nitration process [J].
Nikolsky, Sergey N. ;
Zlenko, Dmitry, V ;
Melnikov, Valery P. ;
Stovbun, Sergey, V .
CARBOHYDRATE POLYMERS, 2019, 204 :232-237