The effect of work processes on the casing heat transfer of a transonic turbine

被引:36
作者
Thorpe, Steven J. [1 ]
Miller, Robert J.
Yoshino, Shin
Ainsworth, Roger W.
Harvey, Neil W.
机构
[1] Univ Loughborough, Dept Aeronaut & Automot Engn, Loughborough LE12 7TW, Leics, England
[2] Univ Cambridge, Whittle Lab, Cambridge CB3 0DY, England
[3] Tokyo Elect Power Co Ltd, Yokohama, Kanagawa 2308510, Japan
[4] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[5] Rollys Royce Plc, Derby DE24 8BJ, England
来源
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME | 2007年 / 129卷 / 01期
关键词
D O I
10.1115/1.2372772
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper considers the effect of the rotor tip on the casing heat load of a transonic axial flow turbine. The aim of the research is to understand the dominant causes of casing heat transfer. Experimental measurements were conducted at engine-representative Mach number, Reynolds number, and stage inlet to casing wall temperature ratio. Time-resolved heat-transfer coefficient and gas recovery temperature on the casing were measured using an array of heat-transfer gauges. Time-resolved static pressure on the casing wall was measured using Kulite pressure transducers. Time-resolved numerical simulations were undertaken to aid understanding of the mechanism responsible for casing heat load. The results show that between 35% and 60% axial chord the rotor tip-leakage flow is responsible for more than 50% of casing heat transfer. The effects of both gas recovery temperature and heat transfer coefficient were investigated separately and it is shown that an increased stagnation temperature in the rotor tip gap dominates casing heat transfer. In the tip gap the stagnation temperature is shown to rise above that found at stage inlet (combustor exit) by as much as 35% of stage total temperature drop. The rise in stagnation temperature is caused by an isentropic work input to the tip-leakage fluid by the rotor. The size of this mechanism is investigated by computationally tracking fluid path lines through the rotor tip gap to understand the unsteady work processes that occur.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 17 条
[1]  
AINSWORTH RW, 1988, 88GT144 ASME
[2]  
ARTS T, 2004, VONKARMAN I FLUID DY
[3]  
Bunker RS, 2001, ANN NY ACAD SCI, V934, P64
[4]  
DEAN RC, 1959, ASME J BASIC ENG, V81, P24
[5]  
DENTON JD, 1990, 90GT19 ASME
[6]  
Guenette G. R., 1985, 851220 AIAA
[7]   THE EFFECT OF BLADE TIP GEOMETRY ON THE TIP LEAKAGE FLOW IN AXIAL TURBINE CASCADES [J].
HEYES, FJG ;
HODSON, HP ;
DAILEY, GM .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1992, 114 (03) :643-651
[8]   HEAT-TRANSFER AND EFFECTIVENESS ON FILM COOLED TURBINE BLADE TIP MODELS [J].
KIM, YW ;
METZGER, DE .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1995, 117 (01) :12-21
[9]   TURBINE TIP AND SHROUD HEAT-TRANSFER [J].
METZGER, DE ;
DUNN, MG ;
HAH, C .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1991, 113 (03) :502-507
[10]   Time-resolved vane-rotor interaction in a high-pressure turbine stage [J].
Miller, RJ ;
Moss, RW ;
Ainsworth, RW ;
Horwood, CK .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2003, 125 (01) :1-13