Fermi acceleration and scaling properties of a time dependent oval billiard

被引:37
作者
Leonel, Edson D. [1 ]
Oliveira, Diego F. M. [2 ]
Loskutov, Alexander [1 ,3 ]
机构
[1] Univ Estadual Paulista, Dept Estat Matemat Aplicada & Computacao, BR-13506900 Sao Paulo, Brazil
[2] Univ Estadual Paulista, Dept Fis, BR-13506900 Sao Paulo, Brazil
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119899, Russia
基金
巴西圣保罗研究基金会;
关键词
chaos; classical mechanics; geometry; nonlinear dynamical systems; BOUNCER MODEL; DYNAMICS;
D O I
10.1063/1.3227740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the phenomenon of Fermi acceleration for a classical particle inside an area with a closed boundary of oval shape. The boundary is considered to be periodically time varying and collisions of the particle with the boundary are assumed to be elastic. It is shown that the breathing geometry causes the particle to experience Fermi acceleration with a growing exponent rather smaller as compared to the no breathing case. Some dynamical properties of the particle's velocity are discussed in the framework of scaling analysis.
引用
收藏
页数:7
相关论文
共 26 条
  • [1] [Anonymous], 1992, Regular and chaotic dynamics
  • [2] Bouncing ball problem: Stability of the periodic modes
    Barroso, Joaquim J.
    Carneiro, Marcus V.
    Macau, Elbert E. N.
    [J]. PHYSICAL REVIEW E, 2009, 79 (02):
  • [3] Berry M. V., 1981, European Journal of Physics, V2, P91, DOI 10.1088/0143-0807/2/2/006
  • [4] Fermi acceleration on the annular billiard: a simplified version
    de Carvalho, RE
    de Souza, FC
    Leonel, ED
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3561 - 3573
  • [5] CHAOTIC DYNAMICS OF A BOUNCING BALL
    EVERSON, RM
    [J]. PHYSICA D, 1986, 19 (03): : 355 - 383
  • [6] SPIN DEPENDENCE OF SLOW NEUTRON SCATTERING BY DEUTERONS
    FERMI, E
    MARSHALL, L
    [J]. PHYSICAL REVIEW, 1949, 75 (04): : 578 - 580
  • [7] Fermi acceleration in non-autonomous billiards
    Gelfreich, V.
    Turaev, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (21)
  • [8] HOLMES PJ, 1982, J SOUND VIB, V84, P173, DOI 10.1016/S0022-460X(82)80002-3
  • [9] The presence and lack of Fermi acceleration in nonintegrable billiards
    Kamphorst, S. Oliffson
    Leonel, E. D.
    da Silva, J. K. L.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (37) : F887 - F893
  • [10] Bounded gain of energy on the breathing circle billiard
    Kamphorst, SO
    de Carvalho, SP
    [J]. NONLINEARITY, 1999, 12 (05) : 1363 - 1371