Recommendation System for Material Scientists Based on Deep Learn Neural Network

被引:3
作者
Kliuev, Andrei [1 ]
Klestov, Roman [1 ]
Bartolomey, Maria [1 ]
Rogozhnikov, Aleksei [1 ]
机构
[1] Perm Natl Res Polytech Univ, Komsomolsky Ave 29, Perm 614990, Perm Region, Russia
来源
DIGITAL SCIENCE | 2019年 / 850卷
基金
欧盟地平线“2020”;
关键词
Deep networks; Machine learning; Functional materials;
D O I
10.1007/978-3-030-02351-5_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper considers the possibilities of artificial neural networks and deep machine learning in the problem of predicting the physicomechanical properties of functional materials. It is shown that the popular deep neural network VGG with high accuracy solves the problem of hardness classification of metal alloy on the basis of iron. The prospects of building a generative adversarial network that is able to predict the structure of the alloy with pre-determined physicomechanical characteristics are discussed.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 15 条
  • [1] [Anonymous], 2015, ARXIV150507376
  • [2] [Anonymous], P 27 INT C COMP GRAP
  • [3] [Anonymous], ARXIV161102764V1
  • [4] [Anonymous], ARXIV170606480
  • [5] [Anonymous], 2015, PROCIEEE CONFCOMPUT, DOI DOI 10.1109/CVPR.2015.7298594
  • [6] Exploring the microstructure manifold: Image texture representations applied to ultrahigh carbon steel microstructures
    DeCost, Brian L.
    Francis, Toby
    Holm, Elizabeth A.
    [J]. ACTA MATERIALIA, 2017, 133 : 30 - 40
  • [7] Faghih-Roohi S, 2016, IEEE IJCNN, P2584, DOI 10.1109/IJCNN.2016.7727522
  • [8] Goodfellow I., 2014, arXiv 1406. 2661
  • [9] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [10] Hu J., 2017, CORR