Identification of fractional-order systems with unknown initial values and structure

被引:33
作者
Du, Wei [1 ]
Miao, Qingying [2 ]
Tong, Le [3 ]
Tang, Yang [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Continuing Educ, Shanghai 200030, Peoples R China
[3] Hong Kong Polytech Univ, Fac Appl Sci & Text, Hong Kong, Hong Kong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fractional-order chaotic systems; Differential evolution; Nonlinear optimization; System identification; Synchronization; DIFFERENTIAL EVOLUTION; PARAMETER-IDENTIFICATION; GLOBAL OPTIMIZATION; CHAOS; SYNCHRONIZATION;
D O I
10.1016/j.physleta.2017.03.048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the identification problem of fractional-order chaotic systems is proposed and investigated via an evolutionary optimization approach. Different with other studies to date, this research focuses on the identification of fractional-order chaotic systems with not only unknown orders and parameters, but also unknown initial values and structure. A group of fractional-order chaotic systems, i.e., Lorenz,Lu, Chen, Rossler, Arneodo and Volta chaotic systems, are set as the system candidate pool. The identification problem of fractional-order chaotic systems in this research belongs to mixed integer nonlinear optimization in essence. A powerful evolutionary algorithm called composite differential evolution (CoDE) is introduced for the identification problem presented in this paper. Extensive experiments are carried out to show that the fractional-order chaotic systems with unknown initial values and structure can be successfully identified by means of CoDE. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1943 / 1949
页数:7
相关论文
共 47 条
[21]   Chaos-order transition in foraging behavior of ants [J].
Li, Lixiang ;
Peng, Haipeng ;
Kurths, Juergen ;
Yang, Yixian ;
Schellnhuber, Hans Joachim .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (23) :8392-8397
[22]   Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].
Liang, J. J. ;
Qin, A. K. ;
Suganthan, Ponnuthurai Nagaratnam ;
Baskar, S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :281-295
[23]   Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method [J].
Liu, Xiaojun ;
Hong, Ling ;
Jiang, Jun .
CHAOS, 2016, 26 (08)
[24]   Chaotic dynamics of the fractional-order Lu system and its synchronization [J].
Lu, Jun Guo .
PHYSICS LETTERS A, 2006, 354 (04) :305-311
[25]   Memetic Compact Differential Evolution for Cartesian Robot Control [J].
Neri, Ferrante ;
Mininno, Ernesto .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (02) :54-65
[26]  
Petrás I, 2011, NONLINEAR PHYS SCI, P103
[27]   Kernel methods in system identification, machine learning and function estimation: A survey [J].
Pillonetto, Gianluigi ;
Dinuzzo, Francesco ;
Chen, Tianshi ;
De Nicolao, Giuseppe ;
Ljung, Lennart .
AUTOMATICA, 2014, 50 (03) :657-682
[28]  
Podlubny I., 1999, Math. Sci. Eng
[29]   Opposition-based differential evolution [J].
Rahnamayan, Shahryar ;
Tizhoosh, Hamid R. ;
Salama, Magdy M. A. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (01) :64-79
[30]   Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures [J].
Salcedo-Sanz, S. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 655 :1-70