Monotonicity of solutions for some nonlocal elliptic problems in half-spaces

被引:11
作者
Barrios, B. [1 ]
Del Pezzo, L. [2 ]
Garcia-Melian, J. [1 ,3 ]
Quaas, A. [4 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[2] Consejo Nacl Invest Cient & Tecn, UBA, Dept Matemat FCEyN, Ciudad Univ Pab 1, RA-1428 Buenos Aires, DF, Argentina
[3] Univ La Laguna, Inst Univ Estudios Avanzados IUdEA Fis Atom Mol &, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[4] Univ Tecn Federico Santa Maria, Dept Matemat, Casilla V-110, Valparaiso 1680, Chile
关键词
NONNEGATIVE SOLUTIONS; FRACTIONAL LAPLACIAN; UNBOUNDED-DOMAINS; EQUATIONS; REGULARITY; DIFFUSION; BOUNDARY; THEOREMS;
D O I
10.1007/s00526-017-1133-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider classical solutions u of the semilinear fractional problem (-Delta)(s)u = f (u) in R-+(N) with u = 0 in R-N\R-+(N), where (-Delta)(s), 0 < s < 1, stands for the fractional laplacian, N >= 2, R-+(N) = {x = (x ', xN) is an element of R-N : x(N) > 0} is the half-space and f is an element of C-1 is a given function. With no additional restriction on the function f, we show that bounded, nonnegative, nontrivial classical solutions are indeed positive in R-+(N) and verify partial derivative u/partial derivative x(N) > 0 in R-+(N). This is in contrast with previously known results for the local case s = 1, where nonnegative solutions which are not positive do exist and the monotonicity property above is not known to hold in general even for positive solutions when f (0) < 0.
引用
收藏
页数:16
相关论文
共 39 条
[1]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[2]  
[Anonymous], 1979, Comm. Partial Differential Equations, DOI 10.1080/03605307908820119
[3]  
Applebaum D., 2009, CAMBRIDGE STUDIES AD, V2
[4]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[5]  
2-6
[6]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[7]  
Berestycki H., 1993, BOUND VALUE PROBL PA, V29, P27
[8]  
Berestycki H., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V25, P69
[9]  
Bertoin J., 1996, Cambridge Tracts in Mathematics, V121
[10]  
Blumenthal R.M., 1961, Transactions of the American Mathematical Society, V99, P540, DOI [10.2307/1993561, DOI 10.2307/1993561]