Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics

被引:159
作者
Wei, Huanhuan [1 ]
Shi, Rongchao [1 ]
Sun, Lin [1 ]
Yu, Haiyang [1 ]
Gong, Jiangdong [1 ]
Liu, Chao [1 ]
Xu, Zhipeng [1 ]
Ni, Yao [1 ]
Xu, Jialiang [1 ]
Xu, Wentao [1 ]
机构
[1] Nankai Univ, Coll Elect Informat & Opt Engn, Key Lab Optoelect Thin Film Devices & Technol Tia, Sch Mat Sci & Engn,Natl Inst Adv Mat,Inst Photoel, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-021-21319-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A graphdiyne-based artificial synapse (GAS), exhibiting intrinsic short-term plasticity, has been proposed to mimic biological signal transmission behavior. The impulse response of the GAS has been reduced to several millivolts with competitive femtowatt-level consumption, exceeding the biological level by orders of magnitude. Most importantly, the GAS is capable of parallelly processing signals transmitted from multiple pre-neurons and therefore realizing dynamic logic and spatiotemporal rules. It is also found that the GAS is thermally stable (at 353K) and environmentally stable (in a relative humidity up to 35%). Our artificial efferent nerve, connecting the GAS with artificial muscles, has been demonstrated to complete the information integration of pre-neurons and the information output of motor neurons, which is advantageous for coalescing multiple sensory feedbacks and reacting to events. Our synaptic element has potential applications in bioinspired peripheral nervous systems of soft electronics, neurorobotics, and biohybrid systems of brain-computer interfaces. Constructing artificial sensorimotor systems for robotic applications calls for development of synaptic connections for complicated information processing. Wei et al. propose a graphdiyne-based artificial synapse capable of parallel processing signals and utilize it in an artificial mechanoreceptor system.
引用
收藏
页数:10
相关论文
共 74 条
[1]   A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities [J].
Akbari, Mohammad Karbalaei ;
Zhuiykov, Serge .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks [J].
Buccelli, Stefano ;
Bornat, Yannick ;
Colombi, Ilaria ;
Ambroise, Matthieu ;
Martines, Laura ;
Pasquale, Valentina ;
Bisio, Marta ;
Tessadori, Jacopo ;
Nowak, Przemyslaw ;
Grassia, Filippo ;
Averna, Alberto ;
Tedesco, Mariateresa ;
Bonifazi, Paolo ;
Difato, Francesco ;
Massobrio, Paolo ;
Levi, Timothee ;
Chiappalone, Michela .
ISCIENCE, 2019, 19 :402-+
[3]   Piezotronic Graphene Artificial Sensory Synapse [J].
Chen, Youhui ;
Gao, Guoyun ;
Zhao, Jing ;
Zhang, Huai ;
Yu, Jinran ;
Yang, Xixi ;
Zhang, Qian ;
Zhang, Wenliang ;
Xu, Shuya ;
Sun, Jia ;
Meng, Yanfang ;
Sun, Qijun .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (41)
[4]   Energy scavenging artificial nervous system for detecting rotational movement [J].
Choi, Daehwan ;
Song, Min-Kyu ;
Sung, Taehoon ;
Jang, Sukjin ;
Kwon, Jang-Yeon .
NANO ENERGY, 2020, 74
[5]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[6]   Frequency-dependent learning achieved using semiconducting polymer/electrolyte composite cells [J].
Dong, W. S. ;
Zeng, F. ;
Lu, S. H. ;
Liu, A. ;
Li, X. J. ;
Pan, F. .
NANOSCALE, 2015, 7 (40) :16880-16889
[7]   Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities [J].
Du, Huiping ;
Yang, Hui ;
Huang, Changshui ;
He, Jianjiang ;
Liu, Huibiao ;
Li, Yuliang .
NANO ENERGY, 2016, 22 :615-622
[8]   Fundament and Application of Graphdiyne in Electrochemical Energy [J].
Du, Yuncheng ;
Zhou, Weidong ;
Gao, Jian ;
Pan, Xiangyu ;
Li, Yuliang .
ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (02) :459-469
[9]   Overview of the SpiNNaker System Architecture [J].
Furber, Steve B. ;
Lester, David R. ;
Plana, Luis A. ;
Garside, Jim D. ;
Painkras, Eustace ;
Temple, Steve ;
Brown, Andrew D. .
IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (12) :2454-2467
[10]   Graphdiyne: synthesis, properties, and applications [J].
Gao, Xin ;
Liu, Huibiao ;
Wang, Dan ;
Zhang, Jin .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (03) :908-936