Composition of Pseudo-Differential Operators Associated with Jacobi Differential Operator

被引:0
作者
Prasad, Akhilesh [1 ]
Singh, Manoj Kumar [2 ]
机构
[1] Indian Sch Mines, Dept Appl Math, Indian Inst Technol, Dhanbad, Bihar, India
[2] Ranchi Univ, Dept Math, St Xaviers Coll, Ranchi, Jharkhand, India
关键词
Pseudo-differential operator; Fourier-Jacobi differential operators; Jacobi function; Fourier-Jacobi Convolution;
D O I
10.1007/s40010-018-0484-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using inverse Fourier-Jacobi transform two symbols are defined and two pseudo-differential operators (p.d.o.'s) P-alpha,P-beta(x, D) and Q(alpha,beta)(x, D) are introduced. Composition of P-alpha,P-beta(x, D) and Q(alpha,beta)(x, D) is defined. It is shown that the p.d.o.'s and composition of p.d.o.'s are bounded in a Sobolev type space. Some special cases are discussed.
引用
收藏
页码:509 / 516
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1998, J MATH ANAL APPL
[2]   Sobolev type spaces associated with Jacobi differential operators [J].
Ben Salem, N ;
Dachraoui, A .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (03) :163-184
[3]  
Ben Salem N., 1994, J. Theoret. Probab, V7, P417, DOI DOI 10.1007/BF02214276
[4]   Hypoelliptic Jacobi convolution operators on Schwartz distributions [J].
Betancor, JJ ;
Betancor, JD ;
Méndez, JMR .
POSITIVITY, 2004, 8 (04) :407-422
[5]   PALEY-WIENER TYPE THEOREMS FOR A DIFFERENTIAL OPERATOR CONNECTED WITH SYMMETRIC SPACES [J].
FLENSTEDJENSEN, M .
ARKIV FOR MATEMATIK, 1972, 10 (01) :143-+
[6]   CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1973, 11 (02) :245-262
[7]   JACOBI FUNCTIONS - ADDITION FORMULA AND THE POSITIVITY OF THE DUAL CONVOLUTION STRUCTURE [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, TH .
ARKIV FOR MATEMATIK, 1979, 17 (01) :139-151
[8]  
Pathak RS, 2000, INDIAN J PURE AP MAT, V31, P309
[9]  
Pathak RS, 2002, INDIAN J PURE AP MAT, V33, P367
[10]   Pseudo-differential operators associated with the Jacobi differential operator and Fourier-cosine wavelet transform [J].
Prasad, Akhilesh ;
Singh, Manoj K. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (01)