Nonlinear excitations and "peakons" of a (2+1)-dimensional generalized Broer-Kaup system

被引:2
作者
Tang, X. Y. [1 ]
Chow, K. W.
Lou, S. Y.
机构
[1] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] Ningbo Univ, Dept Phys, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
shallow water wave; excitation; Broer-Kaup system; peakon;
D O I
10.1007/s10409-007-0062-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Shallow water waves and a host of long wave phenomena are commonly investigated by various models of nonlinear evolution equations. Examples include the Korteweg-de Vries, the Camassa-Holm, and the Whitham-Broer-Kaup (WBK) equations. Here a generalized WBK system is studied via the multi-linear variable separation approach. A special class of wave profiles with discontinuous derivatives ("peakons") is developed. Peakons of various features, e.g. periodic, pulsating or fractal, are investigated and interactions of such entities are studied.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 18 条
  • [1] EVOLUTION OF PACKETS OF WATER-WAVES
    ABLOWITZ, MJ
    SEGUR, H
    [J]. JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) : 691 - 715
  • [2] A new class of (2+1)-dimensional combined structures with completely elastic and non-elastic interactive properties
    Bai, CL
    Bai, CJ
    Zhao, H
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (1-2): : 53 - 59
  • [3] APPROXIMATE EQUATIONS FOR LONG WATER WAVES
    BROER, LJF
    [J]. APPLIED SCIENTIFIC RESEARCH, 1975, 31 (05): : 377 - 395
  • [4] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [5] Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations
    Chen, Y
    Wang, Q
    Li, B
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (01) : 231 - 246
  • [6] A 2ND-ORDER SOLUTION FOR THE SOLITARY WAVE IN A ROTATIONAL FLOW
    CHOW, KW
    [J]. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (07): : 1235 - 1239
  • [7] Discrete peakons
    Comech, A
    Cuevas, J
    Kevrekidis, PG
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2005, 207 (3-4) : 137 - 160
  • [8] Interactions among periodic waves and solitary waves of the (N+1)-dimensional sine-Gordon field -: art. no. 036604
    Lou, SY
    Hu, HC
    Tang, XY
    [J]. PHYSICAL REVIEW E, 2005, 71 (03):
  • [9] A 17TH-ORDER SERIES EXPANSION FOR THE SOLITARY WAVE
    PENNELL, SA
    SU, CH
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 149 (DEC) : 431 - 443
  • [10] Shen SF, 2005, COMMUN THEOR PHYS, V43, P965