Beneficial use of hyperbaric process conditions for welding of aluminium and copper alloys

被引:4
作者
Treutler, K. [1 ,2 ]
Brechelt, S. [1 ]
Wiche, H. [1 ,2 ]
Wesling, V [2 ]
机构
[1] Tech Univ Clausthal, Ctr Mat Technol, Agr Str 2, D-38678 Clausthal Zellerfeld, Germany
[2] Tech Univ Clausthal, Inst Welding & Machining, Agr Str 2, D-38678 Clausthal Zellerfeld, Germany
关键词
Aluminium; Copper; Joining; Hyperbaric process; Microstructure; Penetration; GMA-welding;
D O I
10.1007/s40194-021-01088-1
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The joining of components with as few weld layers as possible is an important aspect of weld seam design due to the resulting reduced manufacturing effort and reduced influence of thermal cycles on the base material as well as reduced distortion. For materials with good thermal conductivity, this is not easily possible. The energy density of the arc has been found to be the core parameter for determining the penetration. In the present work, it is shown how the use of a hyperbaric process environment (2 to 16 bar) allows an increase of the energy density of the arc and thus an increase of the penetration depth for selected aluminium and copper alloys. Furthermore, the effects of this novel approach on weld metal metallurgy are presented. It is shown that the penetration depth can be doubled by increasing the ambient pressure. Furthermore, a statistical model for the prediction of the penetration depth depending on the welding parameters will be presented.
引用
收藏
页码:1623 / 1631
页数:9
相关论文
共 50 条
  • [41] Experimental investigation of texture gradients in aluminium/copper plates bonded through explosive welding process
    Paul, H.
    Miszczyk, M.
    Prazmowski, M.
    TEXTURES OF MATERIALS, PTS 1 AND 2, 2012, 702-703 : 603 - +
  • [42] Effect of Process Parameters on Interfacial Bonding Properties of Aluminium-Copper Clad Sheet Processed by Multi-Pass Friction Stir-Welding Technique
    Osman, Nora
    Sajuri, Zainuddin
    Baghdadi, Amir Hossein
    Omar, Mohd Zaidi
    METALS, 2019, 9 (11)
  • [43] Formation and distribution of brittle structures in friction stir welding of aluminium and copper: influence of process parameters
    Galvao, I.
    Oliveira, J. C.
    Loureiro, A.
    Rodrigues, D. M.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2011, 16 (08) : 681 - 689
  • [44] High speed friction stir welding of aluminium alloys
    Rodrigues, D. M.
    Leitao, C.
    Louro, R.
    Gouveia, H.
    Loureiro, A.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2010, 15 (08) : 676 - 681
  • [45] Laser-mig hybrid welding of aluminium alloys
    Shibata K.
    Sakamoto H.
    Iwase T.
    Welding in the World, 2006, 50 (1-2) : 28 - 34
  • [46] Residual stresses in Linear Friction Welding of aluminium alloys
    Song, X.
    Xie, M.
    Hofmann, F.
    Jun, T. S.
    Connolley, T.
    Reinhard, C.
    Atwood, R. C.
    Connor, L.
    Drakopoulos, M.
    Harding, S.
    Korsunsky, A. M.
    MATERIALS & DESIGN, 2013, 50 : 360 - 369
  • [47] FRICTION STIR SPOT WELDING OF DISSIMILAR ALUMINIUM ALLOYS
    Bozkurt, Yahya
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2016, 69 (06): : 785 - 792
  • [48] Double pulse laser welding of 6082 aluminium alloys
    von Witzendorff, P.
    Hermsdorf, J.
    Kaierle, S.
    Suttmann, O.
    Overmeyer, L.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2015, 20 (01) : 42 - 47
  • [49] Microstructural modelling for friction stir welding of aluminium alloys
    Robson, J. D.
    Kamp, N.
    Sullivan, A.
    MATERIALS AND MANUFACTURING PROCESSES, 2007, 22 (04) : 450 - 456
  • [50] Electrodeposition of nanocrystalline aluminium, copper, and copper–aluminium alloys from 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate ionic liquid
    P. Giridhar
    S. Zein El Abedin
    F. Endres
    Journal of Solid State Electrochemistry, 2012, 16 : 3487 - 3497