QUASI-PERIODIC SOLUTIONS OF GENERALIZED BOUSSINESQ EQUATION WITH QUASI-PERIODIC FORCING

被引:6
作者
Shi, Yanling [1 ]
Xu, Junxiang [2 ]
Xu, Xindong [2 ]
机构
[1] Yancheng Inst Technol, Coll Math & Phys, Yancheng 224051, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 211189, Jiangsu, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2017年 / 22卷 / 06期
基金
中国国家自然科学基金;
关键词
Quasi-periodically forced generalized Boussinesq equation; quasi-periodic solution; infinite dimensional KAM theory; invariant torus; WAVE-EQUATIONS; BLOW-UP; STRONG INSTABILITY; GLOBAL EXISTENCE; SOLITARY WAVES;
D O I
10.3934/dcdsb.2017104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, one-dimensional quasi-periodically forced generalized Boussinesq equation u(tt) - u(xx) + u(xxxx) + epsilon phi(t) (u + u(3))(xx) = 0 with hinged boundary conditions is considered, where epsilon is a small positive parameter, phi(t) is a real analytic quasi- periodic function in t with frequency vector omega = (omega(1), omega(2), ... ,omega(m)). It is proved that, under a suitable hypothesis on phi(t); there are many quasi- periodic solutions for the above equation via KAM theory.
引用
收藏
页码:2501 / 2519
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 1993, LECT NOTES MATH
[2]  
[Anonymous], 1872, J MATH PURE APPL
[3]   Forced vibrations of a nonhomogeneous string [J].
Baldi, Pietro ;
Berti, Massimiliano .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :382-412
[4]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[5]   Quasi-periodic solutions of completely resonant forced wave equations [J].
Berti, M ;
Procesi, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (06) :959-985
[6]   GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION [J].
BONA, JL ;
SACHS, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :15-29
[7]  
Boussinesq M., 1871, CR HEBD ACAD SCI, V73, P256
[8]  
BOUSSINESQ MJ, 1877, MEM ACAD SCI I FR SE, V2, P1
[9]  
Defit P., 1982, COMMUN PUR APPL MATH, V35, P567
[10]   Quasi-periodic solutions for fully nonlinear forced reversible Schrodinger equations [J].
Feola, Roberto ;
Procesi, Michela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :3389-3447