Mixtures of Glyoxylic Acetals and Organic Carbonates as Electrolytes for Lithium-Ion Batteries

被引:16
作者
Koeps, L. [1 ,2 ]
Leibing, C. [1 ,2 ]
Hess, L. H. [1 ,2 ]
Balducci, A. [1 ,2 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, D-07743 Jena, Germany
[2] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, D-07743 Jena, Germany
关键词
ENERGY-STORAGE; SOLVENTS;
D O I
10.1149/1945-7111/abd604
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we report a systematic investigation about the chemical-physical properties of mixtures containing glyoxylic solvents (tetramethoxyglyoxal (TMG) and tetraethoxyglyoxal (TEG)) and organic carbonates, and about the use of these blends as electrolytes for lithium-ion batteries (LIBs). We showed that these mixtures display promising conductivities and viscosities as well as high thermal stability. Furthermore, they also display significantly higher flash points (up to 60 degrees C) than the state-of-the-art LIB electrolytes. These mixtures can be successfully utilized for the realization of lab scale LIBs displaying high stability and good rate capability at high C-rate. Furthermore, LIBs containing this innovative electrolyte display good stability at room temperature as well as at 40 degrees C and 60 degrees C. Considering these results, mixtures of glyoxylic acetals and organic carbonates appear as promising electrolytes for advanced LIBs.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The development in aqueous lithium-ion batteries
    Bin, Duan
    Wen, Yunping
    Wang, Yonggang
    Xia, Yongyao
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (06) : 1521 - 1535
  • [32] Nanoscale materials for lithium-ion batteries
    Sides, CR
    Li, NC
    Patrissi, CJ
    Scrosati, B
    Martin, CR
    MRS BULLETIN, 2002, 27 (08) : 604 - 607
  • [33] Electrode Degradation in Lithium-Ion Batteries
    Pender, Joshua P.
    Jha, Gaurav
    Youn, Duck Hyun
    Ziegler, Joshua M.
    Andoni, Ilektra
    Choi, Eric J.
    Heller, Adam
    Dunn, Bruce S.
    Weiss, Paul S.
    Penner, Reginald M.
    Mullins, C. Buddie
    ACS NANO, 2020, 14 (02) : 1243 - 1295
  • [34] Nanoscale Materials for Lithium-Ion Batteries
    Charles R. Sides
    Naichao Li
    Charles J. Patrissi
    Bruno Scrosati
    Charles R. Martin
    MRS Bulletin, 2002, 27 : 604 - 607
  • [35] Comparative Study of High Voltage Spinel∥Lithium Titanate Lithium-ion Batteries in Ethylene Carbonate Free Electrolytes
    Stokes-Rodriguez, Killian
    Jayasayee, Kaushik
    Hanetho, Sidsel M.
    Kvello, Jannicke
    Molesworth, Peter P.
    Dahl, Oystein
    Peter Wagner, Nils
    BATTERIES & SUPERCAPS, 2025, 8 (03)
  • [36] Physical mixtures of Si nanoparticles and carbon nanofibers as anode materials for lithium-ion batteries
    Koo, Jeong-Boon
    Jang, Bo-Yun
    Kim, Sung-Soo
    Han, Kyoo-Seung
    Jung, Doo-Hwan
    Yoon, Seong-Ho
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (08)
  • [37] Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries
    Das, Arya
    Sahu, Satyaswini
    Mohapatra, Mamata
    Verma, Sarika
    Bhattacharyya, Aninda J.
    Basu, Suddhasatwa
    MATERIALS TODAY ENERGY, 2022, 29
  • [38] A Novel Strategy to Enable Effective Use of Dioxolane-Based Electrolytes in Lithium-Ion Batteries
    Orbay, Metin
    Leistenschneider, Desiree
    Leibing, Christian
    Balducci, Andrea
    CHEMELECTROCHEM, 2023, 10 (13)
  • [39] Acyclic Acetals in Propylene Carbonate-Based Electrolytes for Advanced and Safer Graphite-Based Lithium Ion Batteries
    Atik, J.
    Roeser, S.
    Wagner, R.
    Berghus, D.
    Winter, M.
    Cekic-Laskovic, I
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (04)
  • [40] Lithium salt/amide-based deep eutectic electrolytes for lithium-ion batteries: electrochemical, thermal and computational study
    Ogawa, Hideyuki
    Mori, Hideharu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (16) : 8853 - 8863