Low temperature metalorganic chemical vapor deposition of gallium nitride using dimethylhydrazine as nitrogen source

被引:20
|
作者
Hsu, YJ [1 ]
Hong, LS [1 ]
Huang, KF [1 ]
Tsay, JE [1 ]
机构
[1] Natl Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan
关键词
chemical vapor deposition; dimethylhydrazine; gallium nitrides; growth mechanism;
D O I
10.1016/S0040-6090(02)00781-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gallium nitride (GaN) films have been homoepitaxially grown by low pressure metalorganic chemical vapor deposition technique using dimethylhydrazine (DMHy) and trimethylgallium (TMG) as the reactants at low temperatures ranging from 873 to 923 K and a constant pressure of 10 Torr. The potential of utilizing DMHy as a nitrogen source is evaluated through understanding the kinetics of GaN film growth. A growth rate dependency study with respect to DMHy and TMG concentrations indicates that Langmuir-Hinshelwood typed reaction dominates the film growth. From a model fitting to the experimental film growth rate, the adsorption equilibrium constant of DMHy is found to be approximately 1/20 that of TMG, indicating that V/III feed ratio can be reduced down to 20 to obtain a stoichiometric GaN film. Based on X-ray photoelectron spectroscope measurement, the films formed by DMHy, however, accompany significant carbon contamination due to the strong C-N bonding in DMHy. The contamination can be relieved effectively by introducing H, into the reaction. (C) 2002 Elsevier Science B.V All lights reserved.
引用
收藏
页码:33 / 39
页数:7
相关论文
共 50 条
  • [1] LOW-TEMPERATURE CHEMICAL VAPOR-DEPOSITION OF SILICON-NITRIDE USING A NEW SOURCE GAS (HYDROGEN AZIDE)
    ISHIHARA, R
    KANOH, H
    SUGIURA, O
    MATSUMURA, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1992, 31 (2A): : L74 - L77
  • [2] Low-temperature growth of cubic GaN by metalorganic chemical-vapor deposition
    Zheng, LX
    Yang, H
    Xu, DP
    Wang, XJ
    Li, XF
    Li, JB
    Wang, YT
    Duan, LH
    Hu, XW
    THIN SOLID FILMS, 1998, 326 (1-2) : 251 - 255
  • [3] Maskless Lateral Epitaxial Growth of Gallium Nitride Using Dimethylhydrazine as a Nitrogen Precursor
    Toshiyuki Takizawa
    Jun Shimizu
    Tetsuzo Ueda
    Journal of Electronic Materials, 2007, 36 : 403 - 408
  • [4] Maskless lateral epitaxial growth of gallium nitride using dimethylhydrazine as a nitrogen precursor
    Takizawa, Toshiyuki
    Shimizu, Jun
    Ueda, Tetsuzo
    JOURNAL OF ELECTRONIC MATERIALS, 2007, 36 (04) : 403 - 408
  • [5] Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst
    赵云
    王钢
    杨怀超
    安铁雷
    陈闽江
    余芳
    陶立
    羊建坤
    魏同波
    段瑞飞
    孙连峰
    ChinesePhysicsB, 2014, 23 (09) : 362 - 367
  • [6] Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst
    Zhao Yun
    Wang Gang
    Yang Huai-Chao
    An Tie-Lei
    Chen Min-Jiang
    Yu Fang
    Tao Li
    Yang Jian-Kun
    Wei Tong-Bo
    Duan Rui-Fei
    Sun Lian-Feng
    CHINESE PHYSICS B, 2014, 23 (09)
  • [7] Reaction mechanism of a lanthanum precursor in liquid source metalorganic chemical vapor deposition
    Nakamura, T
    Nishimura, T
    Tai, R
    Tachibana, K
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 118 (1-3): : 253 - 258
  • [8] Metalorganic Chemical Vapor Deposition of Oxide Films on Semiconductor Substrates Using Aluminum, Gallium, and Indium Alkyl Chloride Precursors
    O. N. Mittov
    N. I. Ponomareva
    I. Ya. Mittova
    Inorganic Materials, 2002, 38 : 438 - 444
  • [9] Metalorganic chemical vapor deposition of oxide films on semiconductor substrates using aluminum, gallium, and indium alkyl chloride precursors
    Mittov, ON
    Ponomareva, NI
    Mittova, IY
    INORGANIC MATERIALS, 2002, 38 (05) : 438 - 444
  • [10] Low-temperature deposition of crystalline silicon nitride nanoparticles by hot-wire chemical vapor deposition
    Kim, Chan-Soo
    Youn, Woong-Kyu
    Lee, Dong-Kwon
    Seol, Kwang-Soo
    Hwang, Nong-Moon
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (15) : 3938 - 3942