Quantum Effects in the Nonlinear Response of Graphene Plasmons

被引:86
作者
Cox, Joel D. [1 ]
Silveiro, Ivan [1 ]
Javier Garcia de Abajo, F. [1 ,2 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona 08860, Spain
[2] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
关键词
graphene; plasmons; nonlinear optics; nanophotonics; graphene plasmonics; quantum plasmonics; nanoribbons; graphene nanoislands; ABSORPTION; PHOTONICS;
D O I
10.1021/acsnano.5b06110
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability of graphene to support long-lived, electrically tunable plasmons that interact strongly with light, combined with its highly nonlinear optical response, has generated great expectations for application of the atomically thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the milometer scale in actual device designs. Here we show that finite-size effects produce large contributions that increase the nonlinear response of nanostructured graphene to significantly higher levels than those predicted by classical theories. We base our analysis on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation. While classical and quantum descriptions agree well for the linear response when either the plasmon energy is below the Fermi energy or the size of the structure exceeds a few tens of nanometers, this is not always the case for the nonlinear response, and in particular, third-order Kerr-type nonlinearities are generally underestimated by the classical theory. Our results reveal the complex quantum nature of the optical response in nanostructured graphene, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.
引用
收藏
页码:1995 / 2003
页数:9
相关论文
共 67 条
  • [21] Gate-tuning of graphene plasmons revealed by infrared nano-imaging
    Fei, Z.
    Rodin, A. S.
    Andreev, G. O.
    Bao, W.
    McLeod, A. S.
    Wagner, M.
    Zhang, L. M.
    Zhao, Z.
    Thiemens, M.
    Dominguez, G.
    Fogler, M. M.
    Castro Neto, A. H.
    Lau, C. N.
    Keilmann, F.
    Basov, D. N.
    [J]. NATURE, 2012, 487 (7405) : 82 - 85
  • [22] Infrared Nanoscopy of Dirac Plasmons at the Graphene-SiO2 Interface
    Fei, Zhe
    Andreev, Gregory O.
    Bao, Wenzhong
    Zhang, Lingfeng M.
    McLeod, Alexander S.
    Wang, Chen
    Stewart, Margaret K.
    Zhao, Zeng
    Dominguez, Gerardo
    Thiemens, Mark
    Fogler, Michael M.
    Tauber, Michael J.
    Castro-Neto, Antonio H.
    Lau, Chun Ning
    Keilmann, Fritz
    Basov, Dimitri N.
    [J]. NANO LETTERS, 2011, 11 (11) : 4701 - 4705
  • [23] Photocurrent in graphene harnessed by tunable intrinsic plasmons
    Freitag, Marcus
    Low, Tony
    Zhu, Wenjuan
    Yan, Hugen
    Xia, Fengnian
    Avouris, Phaedon
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [24] Graphene Plasmonics: Challenges and Opportunities
    Garcia de Abajo, F. Javier
    [J]. ACS PHOTONICS, 2014, 1 (03): : 135 - 152
  • [25] High frequency electric field induced nonlinear effects in graphene
    Glazov, M. M.
    Ganichev, S. D.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 535 (03): : 101 - 138
  • [26] Nonlinear graphene plasmonics: Amplitude equation for surface plasmons
    Gorbach, A. V.
    [J]. PHYSICAL REVIEW A, 2013, 87 (01):
  • [27] Grigorenko AN, 2012, NAT PHOTONICS, V6, P749, DOI [10.1038/NPHOTON.2012.262, 10.1038/nphoton.2012.262]
  • [28] Regenerative oscillation and four-wave mixing in graphene optoelectronics
    Gu, T.
    Petrone, N.
    McMillan, J. F.
    van der Zande, A.
    Yu, M.
    Lo, G. Q.
    Kwong, D. L.
    Hone, J.
    Wong, C. W.
    [J]. NATURE PHOTONICS, 2012, 6 (08) : 554 - 559
  • [29] Single-Photon Nonlinear Optics with Graphene Plasmons
    Gullans, M.
    Chang, D. E.
    Koppens, F. H. L.
    Garcia de Abajo, F. J.
    Lukin, M. D.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (24)
  • [30] Hedin L., 1970, Solid State Physics, V23, P1, DOI DOI 10.1016/S0081-1947(08)60615-3