Soliton dynamics in a novel discrete O(3) sigma model in (2+1) dimensions

被引:9
作者
Ioannidou, T
机构
[1] Department of Mathematical Sciences, University of Durham
关键词
D O I
10.1088/0951-7715/10/5/019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The O(3) sigma model in two spatial dimensions admits topological (Bogomol'nyi) lower bound on its energy. This paper proposes a lattice version of this system which maintains the Bogomol'nyi bound and allows the explicit construction of static solitons on the lattice. Numerical simulations show that these lattice solitons are unstable under small perturbations; in fact, their size changes linearly with time.
引用
收藏
页码:1357 / 1367
页数:11
相关论文
共 14 条
[1]  
BELAVIN AA, 1975, JETP LETT+, V22, P245
[2]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[3]   GEOMETRICAL METHODS IN THE STUDY OF TOPOLOGICAL EFFECTS ON THE LATTICE [J].
GOCKELER, M .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1988, 36 (11) :801-830
[4]   DISCRETE BOGOMOLNY EQUATIONS FOR THE NONLINEAR O(3) SIGMA-MODEL IN 2 + 1 DIMENSIONS [J].
LEESE, R .
PHYSICAL REVIEW D, 1989, 40 (06) :2004-2013
[5]   LOW-ENERGY SCATTERING OF SOLITONS IN THE CP1 MODEL [J].
LEESE, R .
NUCLEAR PHYSICS B, 1990, 344 (01) :33-72
[6]   SOLITON STABILITY IN THE O(3) SIGMA-MODEL IN (2+1) DIMENSIONS [J].
LEESE, RA ;
PEYRARD, M ;
ZAKRZEWSKI, WJ .
NONLINEARITY, 1990, 3 (02) :387-412
[7]   A REMARK ON THE SCATTERING OF BPS MONOPOLES [J].
MANTON, NS .
PHYSICS LETTERS B, 1982, 110 (01) :54-56
[8]   UNSTABLE MANIFOLDS AND SOLITON DYNAMICS [J].
MANTON, NS .
PHYSICAL REVIEW LETTERS, 1988, 60 (19) :1916-1919
[9]   CYLINDRICALLY SYMMETRIC-SOLUTIONS OF THE NON-LINEAR CHIRAL FIELD MODEL (SIGMA-MODEL) [J].
MIKHAILOV, AV ;
YAREMCHUK, AI .
NUCLEAR PHYSICS B, 1982, 202 (03) :508-522
[10]   Shrinking of solitons in the (2+1)-dimensional S-2 sigma model [J].
Piette, B ;
Zakrzewski, WJ .
NONLINEARITY, 1996, 9 (04) :897-910