Fast convolution with radial kernels at nonequispaced knots

被引:38
作者
Potts, D
Steidl, G [1 ]
Nieslony, A
机构
[1] Univ Mannheim, Fac Math & Comp Sci, D-68131 Mannheim, Germany
[2] Med Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
关键词
D O I
10.1007/s00211-004-0538-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new algorithm for the fast evaluation of linear combinations of radial functions f (y(j)) := Sigma(k=1)(N) alpha(k) K(parallel toy(j) - x(k)parallel to) (j = 1,..., M) for x(k), y(j) is an element of R-2 based on the recently developed fast Fourier transform at nonequispaced knots. For smooth kernels, e.g. the Gaussian, our algorithm requires O(N + M) arithmetic operations. In case of singular kernels an additional regularization procedure must be incorporated and the algorithm has the arithmetic complexity O(N log rootN + M) or O(M log rootM + N) if either the points yj or the points x(k) are "reasonably uniformly distributed". We prove error estimates to obtain clues about the choice of the involved parameters and present numerical examples for various singular and smooth kernels in two dimensions.
引用
收藏
页码:329 / 351
页数:23
相关论文
共 31 条
[1]   Fast evaluation of radial basis functions: Methods for two-dimensional polyharmonic splines [J].
Beatson, RK ;
Light, WA .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) :343-372
[2]   Fast evaluation of radial basis functions: Moment-based methods [J].
Beatson, RK ;
Newsam, GN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1428-1449
[3]   ON THE FAST FOURIER-TRANSFORM OF FUNCTIONS WITH SINGULARITIES [J].
BEYLKIN, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1995, 2 (04) :363-381
[4]  
Böhme M, 2003, ELECTRON T NUMER ANA, V16, P70
[5]   Application of the fast Gauss transform to option pricing [J].
Broadie, M ;
Yamamoto, Y .
MANAGEMENT SCIENCE, 2003, 49 (08) :1071-1088
[6]   Fast evaluation of radial basis functions:: Methods for generalized multiquadrics in Rn [J].
Cherrie, JB ;
Beatson, RK ;
Newsam, GN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (05) :1549-1571
[7]  
DUCHON J, 1975, FONCTIONS SPLINES VE
[8]   Nonuniform fast Fourier transform [J].
Duijndam, AJW ;
Schonewille, MA .
GEOPHYSICS, 1999, 64 (02) :539-551
[9]   FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA [J].
DUTT, A ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1368-1393
[10]  
ELGAMMAL A, 2001, EFFICIENT NONPARAMET