The structural and magnetic properties of dual phase cobalt ferrite

被引:117
作者
Gore, Shyam K. [1 ,2 ]
Jadhav, Santosh S. [2 ]
Jadhav, Vijaykumar V. [1 ]
Patange, S. M. [3 ]
Naushad, Mu. [4 ]
Mane, Rajaram S. [1 ,4 ,5 ]
Kim, Kwang Ho [5 ]
机构
[1] Swami Ramanand Teerth Marathwada Univ, Sch Phys Sci, Ctr Nanomat & Energy Devices, Nanded 431606, India
[2] Commerce & Sci Coll, Dnyanopasak Shikshan Mandals Arts, Jintur 431509, India
[3] Srikrishna Mahavidyalaya, Mat Res Lab, Osmanabad 413613, MS, India
[4] King Saud Univ, Dept Chem, Coll Sci, Bld 5, Riyadh, Saudi Arabia
[5] Pusan Natl Univ, Global Frontier R&D Ctr Hybrid Interface Mat, San 30 Jangjeon Dong, Busan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
NANOCRYSTALLINE; MOSSBAUER;
D O I
10.1038/s41598-017-02784-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bismuth (Bi3+)-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co2+ by trivalent Bi3+ cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi3+ doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi3+-addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi3+-doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi3+-doping in enhancing the magnetic properties of cobalt ferrite.
引用
收藏
页数:9
相关论文
共 47 条
[31]  
Sawatzkyy G. A., 1969, PHYS REV, V2, P187
[32]   Applications of magnetoelectrics [J].
Scott, J. F. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (11) :4567-4574
[33]   Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature [J].
Sedlacik, Michal ;
Pavlinek, Vladimir ;
Peer, Petra ;
Filip, Petr .
DALTON TRANSACTIONS, 2014, 43 (18) :6919-6924
[34]   Nonequilibrium cation distribution, canted spin arrangement, and enhanced magnetization in nanosized MgFe2O4 prepared by a one-step mechanochemical route [J].
Sepelák, Vladimir ;
Feldhoff, Armin ;
Heitjans, Paul ;
Krumeich, Frank ;
Menzel, Dirk ;
Litterst, Fred Jochen ;
Bergmann, Ingo ;
Becker, Klaus Dieter .
CHEMISTRY OF MATERIALS, 2006, 18 (13) :3057-3067
[35]  
Shen Y., J MAT CHEM C, V2
[36]   Preparation and characterization of Co2+ substituted Li-Dy ferrite ceramics [J].
Shinde, U. B. ;
Shirsath, Sagar E. ;
Patange, S. M. ;
Jadhav, S. P. ;
Jadhav, K. M. ;
Patil, V. L. .
CERAMICS INTERNATIONAL, 2013, 39 (05) :5227-5234
[37]   Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis [J].
Shylesh, Sankaranarayanapillai ;
Schuenemann, Volker ;
Thiel, Werner R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (20) :3428-3459
[38]   MAGNETIC-ORDERING AND DOMAIN-WALL RELAXATION IN ZINC-FERROUS FERRITES [J].
SRIVASTAVA, CM ;
SHRINGI, SN ;
SRIVASTAVA, RG ;
NANADIKAR, NG .
PHYSICAL REVIEW B, 1976, 14 (05) :2032-2040
[39]   Autocombustion High-Temperature Synthesis, Structural, and Magnetic Properties of CoCrxFe2-xO4 (0 ≤ x ≤ 1.0) [J].
Toksha, B. G. ;
Shirsath, Sagar E. ;
Mane, M. L. ;
Patange, S. M. ;
Jadhav, S. S. ;
Jadhav, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (43) :20905-20912
[40]  
We L., 2012, AM CERAM SOC BULL, V95, P3922