GPU-Based Monte Carlo Simulation for the Gibbs Ensemble

被引:0
作者
Hailat, Eyad [1 ]
Rushaidat, Kamel [1 ]
Schwiebert, Loren [1 ]
Mick, Jason R. [2 ]
Potoff, Jeffery J. [2 ]
机构
[1] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA
[2] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI 48202 USA
来源
HIGH PERFORMANCE COMPUTING SYMPOSIUM 2013 (HPC 2013) - 2013 SPRING SIMULATION MULTI-CONFERENCE (SPRINGSIM'13) | 2013年 / 45卷 / 06期
基金
美国国家科学基金会;
关键词
Parallel Computing; GPGPU; Monte Carlo simulation; Lennard-Jones Particles; Gibbs ensemble; GRAPHICS PROCESSING UNITS; MOLECULAR-DYNAMICS; OPENMP;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Scientists are interested in simulating large biomolecular systems for longer times to get more accurate results. However, longer running times mean more execution steps with large computation overhead. We present an implementation of Monte Carlo simulation for the Gibbs ensemble using Lennard-Jones atoms on GPUs. Moreover, we use massive multithreading to utilize the large number of cores that the GPU has and hide the parallel setup overhead, such as global memory access and kernel launch overhead. However, this process of porting the code to the GPU includes managing the available resources such as the number of registers, the amount of shared memory, number of threads per Streaming Multiprocessor, and global memory bandwidth used by each thread and kernel. To the best of our knowledge, no other similar work that uses the GPU on this scale has been done for Monte Carlo simulation of the Gibbs ensemble. The evaluation results show over 45 times speedup using a commodity GPU compared to running on a single processor core.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 23 条
[1]   General purpose molecular dynamics simulations fully implemented on graphics processing units [J].
Anderson, Joshua A. ;
Lorenz, Chris D. ;
Travesset, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) :5342-5359
[2]  
[Anonymous], 2012, CUDA C PROGR GUID 4
[3]  
[Anonymous], 2012, BENCHMARK RESULTS LE
[4]  
[Anonymous], 2006, Tech. rep.
[5]   GRAND MOLECULAR DYNAMICS: A METHOD FOR OPEN SYSTEMS [J].
Cagin, Tahir ;
Pettitt, B. Montgomery .
MOLECULAR SIMULATION, 1991, 6 (1-3) :5-26
[6]   CUDA: Compiling and optimizing for a GPU platform [J].
Chakrabarti, Gautam ;
Grover, Vinod ;
Aarts, Bastiaan ;
Kong, Xiangyun ;
Kudlur, Manjunath ;
Lin, Yuan ;
Marathe, Jaydeep ;
Murphy, Mike ;
Wang, Jian-Zhong .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 :1910-1919
[7]   OpenMP: An industry standard API for shared-memory programming [J].
Dagum, L ;
Menon, R .
IEEE COMPUTATIONAL SCIENCE & ENGINEERING, 1998, 5 (01) :46-55
[8]   PARALLEL MONTE-CARLO SIMULATIONS [J].
ESSELINK, K ;
LOYENS, LDJC ;
SMIT, B .
PHYSICAL REVIEW E, 1995, 51 (02) :1560-1568
[9]  
Frenkel D., 2002, UNDERSTANDING MOL SI, V2nd edn
[10]  
Hanrahan P., 2005, Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, P1