Self-dual and maximal self-orthogonal codes over F7

被引:12
作者
Harada, M [1 ]
Östergård, PRJ
机构
[1] Yamagata Univ, Dept Math Sci, Yamagata 9908560, Japan
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, Helsinki 02015, Finland
关键词
self-dual code; classification; maximal self-orthogonal code;
D O I
10.1016/S0012-365X(02)00389-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we give the classification of self-dual F-7-codes of length 12 and maximal self-orthogonal codes of lengths 10, 11 and 13. It is also shown that there is no self-dual [16,8,d greater than or equal to 8] code over F-7. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:471 / 477
页数:7
相关论文
共 50 条
[41]   THE CLASSIFICATION OF SELF-ORTHOGONAL CODES OVER Z(p2) OF LENGTHS <= 3 [J].
Choi, Whan-Hyuk ;
Kim, Kwang Ho ;
Park, Sook Young .
KOREAN JOURNAL OF MATHEMATICS, 2014, 22 (04) :725-742
[42]   New families of self-dual codes [J].
Sok, Lin .
DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (05) :823-841
[43]   New families of self-dual codes [J].
Lin Sok .
Designs, Codes and Cryptography, 2021, 89 :823-841
[44]   Automorphisms of Extremal Self-Dual Codes [J].
Bouyuklieva, Stefka ;
Malevich, Anton ;
Willems, Wolfgang .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2091-2096
[45]   Shadow bounds for self-dual codes [J].
Rains, EM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :134-139
[46]   On the Classification of Hermitian Self-Dual Additive Codes Over GF(9) [J].
Danielsen, Lars Eirik .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (08) :5500-5511
[47]   On the existence of frames of the Niemeier lattices and self-dual codes over Fp [J].
Harada, Masaaki .
JOURNAL OF ALGEBRA, 2009, 321 (08) :2345-2352
[48]   CONSTRUCTION FOR BOTH SELF-DUAL CODES AND LCD CODES [J].
Ishizuka, Keita ;
Saito, Ken .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) :139-151
[49]   Mass formula for self-dual codes over Zp2 [J].
Balmaceda, Jose Maria P. ;
Betty, Rowena Alma L. ;
Nemenzo, Fidel R. .
DISCRETE MATHEMATICS, 2008, 308 (14) :2984-3002